Name: \qquad
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [5 points] Use binomial series to write the Maclaurin series of $f(x)=\sqrt[3]{1+x}$. In particular, write the third Taylor polynomial $p_{3}(x)$ with simplified coefficients.
2. [4 points] Eliminate t from the parametric curve $x(t)=5 \cos t$ and $y(t)=2 \sin t$, to write it as a cartesian (rectangular) equation.
3. [4 points] Sketch the parametric curve by eliminating the parameter. (Hint. Here t can be any real number. However, pay attention to which (x, y) points are generated by the parametric formula.)

$$
x=e^{t}, \quad y=e^{2 t}
$$

4. [4 points] Convert the parametric curve into rectangular form by eliminating the parameter. No sketch is required.
$x=4 t+3, \quad y=16 t^{2}-9$
5. [4 points] Find the slope and the equation of the tangent line at $t=-1$:

$$
x=2 t, \quad y=t^{3}
$$

6. [4 points] For the curve $x=4 \cos \theta$ and $y=4 \sin \theta$, find the concavity at $\theta=\pi / 4$.

Extra Credit. [1 point] The parametric curve $x=(\arctan t) \cos t, y=(\arctan t) \sin t$ has a circle as its asymptote as $t \rightarrow \infty$. Find the cartesian equation of this circle.

