Name: .

_____/ 25

30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [5 points] Use binomial series to write the Maclaurin series of $f(x) = \sqrt[3]{1+x}$. In particular, write the third Taylor polynomial $p_3(x)$ with simplified coefficients.

2. [4 points] Eliminate t from the parametric curve $x(t) = 5\cos t$ and $y(t) = 2\sin t$, to write it as a cartesian (rectangular) equation.

25 April 2024

3. [4 points] Sketch the parametric curve by eliminating the parameter. (*Hint. Here t can be any real number. However, pay attention to which* (x, y) *points are generated by the parametric formula.*)

$$x = e^t$$
, $y = e^{2t}$

4. [4 points] Convert the parametric curve into rectangular form by eliminating the parameter. No sketch is required.

$$x = 4t + 3$$
, $y = 16t^2 - 9$

5. [4 points] Find the slope and the equation of the tangent line at t = -1:

$$x = 2t$$
, $y = t^3$

6. [4 points] For the curve $x = 4\cos\theta$ and $y = 4\sin\theta$, find the concavity at $\theta = \pi/4$.

25 April 2024

Extra Credit. [1 point] The parametric curve $x = (\arctan t) \cos t$, $y = (\arctan t) \sin t$ has a *circle* as its asymptote as $t \to \infty$. Find the cartesian equation of this circle.

BLANK SPACE