
\square
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [5 points] Use binomial series to write the Maclaurin series of $f(x)=\sqrt[3]{1+x}$. In particular, write the third Taylor polynomial $p_{3}(x)$ with simplified coefficients.

$$
\begin{aligned}
& f(x)=(1+x)^{1 / 3} \\
& p_{3}(x)=1+\frac{1}{3} x+\frac{1 / 3}{3} \begin{array}{l}
\frac{1}{3} \cdot\left(-\frac{2}{3}\right) \\
2
\end{array} x^{2}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!} x^{3}
\end{aligned}
$$

2. [4 points] Eliminate t from the parametric curve $x(t)=5 \cos t$ and $y(t)=2 \sin t$, to write it as a cartesian (rectangular) equation.

$$
\left(\frac{x}{5}\right)^{2}+\left(\frac{y}{2}\right)^{2}=\cos ^{2} t+\sin ^{2} t=1
$$

3. [4 points] Sketch the parametric curve by eliminating the parameter. (Hint. Here t can be any real number. However, pay attention to which (x, y) points are generated by the parametric formula.)

$$
x=e^{t}, \quad y=e^{2 t}
$$

$$
y=\left(e^{t}\right)^{2}=x^{2}
$$

4. [4 points] Convert the parametric curve into rectangular form by eliminating the parameter. No sketch is required.

$$
x=4 t+3, \quad y=16 t^{2}-9
$$

$$
\begin{gathered}
\frac{x-3}{4}=t \\
y=16\left(\frac{x-3}{4}\right)^{2}-9
\end{gathered}
$$

either is fine

$$
=x^{2}-6 x
$$

$$
\begin{gathered}
x=2 t, y=t^{3} \quad @ t=-1: x=-2, y=-1 \\
\frac{d y}{d x}=\frac{d y / d t}{d x} / d t=\frac{3 t^{2}}{2} \\
m=\left.\frac{d y}{d x}\right|_{t=-1}=\frac{3(-1)^{2}}{2}=\frac{3}{2} \\
y-(-1)=\frac{3}{2}(x-(-2)) \\
y+1=\frac{3}{2}(x+2)
\end{gathered}
$$

6. [4 points] For the curve $x=4 \cos \theta$ and $y=4 \sin \theta$, find the concavity at $\theta=\pi / 4$.

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\frac{d}{d \theta}\left(\frac{d y}{d x}\right)}{d x / d \theta}=\frac{\frac{d}{d \theta}\left(\frac{d y / d \theta}{d x / d \theta}\right)}{d x / d \theta}=\frac{\frac{d}{d \theta}\left(\frac{4 \cos \theta}{-4 \sin \theta}\right)}{-4 \sin \theta} \\
& =\frac{-(\cot \theta)^{\prime}}{-4 \sin \theta}=+\frac{1}{4} \frac{-\csc ^{2} \theta}{\sin \theta} \\
& =-\frac{1}{4} \frac{1}{\sin ^{3} \theta} \quad \therefore \quad C
\end{aligned}=-\frac{1}{4} \frac{1}{\sin ^{3}(\pi / 4)} .
$$

Math 252 (Bueler): Quiz 11
25 April 2024
Extra Credit. [1 point] The parametric curve $x=(\arctan t) \cos t, y=(\arctan t) \sin t$ has a circle as its asymptote as $t \rightarrow \infty$. Find the equation of this circle.

BLANK SPACE

