Name:

\square / 25
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Find the area of the region between $y=\sin x$ and $y=\cos x$ on the interval $[0, \pi / 2]$. (Hint: Draw a careful sketch first! You may use symmetry if you want.)
 $=2[\sin x+\cos x]_{0}^{\pi / 4}$
$=2\left[\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(0+1)\right]$
$=\frac{4}{\sqrt{2}}-2=2 \sqrt{2}-2=2(\sqrt{2}-1)$

$\sin x=\cos x$

Gang of there are simplified
enough
a. Sketch the region bounded by $y=x^{2}, y=0$, and $x=1$. Then sketch the solid of revolution formed by rotating the region around the x-axis. Please make your sketches adequately large and clear!

b. Find the volume of the solid which you sketched in part a. (Hint: Use discs or washers.)

$$
V=\int_{0}^{1} \pi \underset{\substack{x \\ \text { at parting, } x, \text { radius is } \\ r^{2} \text {-vane }}}{r^{2} d x=\int_{0}^{1} \pi\left(x^{2}\right)^{2} d x}
$$

$$
=\pi \int_{0}^{1} x^{4} d x=\pi\left[\frac{x^{5}}{5}\right]_{0}^{1}=\frac{\pi}{5}
$$

c. Find the volume of the solid formed by revolving the region in part a around the y-axis. (Hint: Sketch the solid. Use discs or washers.)

Math 252 (Bueler): Quiz 2
3. [5 points] A solid has a base which is the unit circle in the x, y plane, and each cross-section parallel to the y-axis is a square. Find the volume.

$$
=8\left[x-\frac{x^{3}}{3}\right]_{0}^{1}=8\left(1-\frac{1}{3}\right)=\frac{16}{3}
$$

EC. [1 points] (Extra Credit) Give the correct value of the definite integral:

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x
$$

(Hint. There is no requirement to use the fundamental theorem of calculus. What is sought is the correct answer, with some justification, which might be a sketch.)

BLANK SPACE

