Name:
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [points] For each part below, completely set up, but do not evaluate, an integral for the quantity.
a. The area between the graphs of $y=\sin \left(x^{2}\right)$ and $y=2 x+5$ on the interval $[-1,1]$. (Hint. This is a section 2.1 question, to get started.)
$A=\int_{-1}^{1}(2 x+5)-\sin \left(x^{2}\right) d x$

$2 x+5$ is above
b. The length of the curve $y=\frac{x^{2}}{8}-\ln x$ on the interval $1 \leq x \leq 3$.

$$
\frac{d y}{x}=\frac{1}{4} x-\frac{1}{x}
$$

$$
L=\int_{1}^{3} \sqrt{1+\left(\frac{x}{4}-\frac{1}{x}\right)^{2}} d x
$$

c. The area of the surface formed by revolving the graph of $y=1-x^{4}$, on the interval $[-1,1]$, around the x-axis.

$$
\frac{d y}{d x}=-4 x^{3}
$$

$$
A=\int_{-1}^{1} 2 \pi\left(1-x^{4}\right) \sqrt{1+16 x^{6}} d x
$$

2. [points]
a. Sketch the region bounded by the curves $y=e^{-x^{2}}, y=0, x=1$, and $x=2$.

b. Use an integral to compute the volume of the solid found by rotating the region in a. around the y-axis. (Hint. The integral from using washers won't work. Using shells you can do the integral.)

3. [points] A large parabolic radio antenna, a satellite dish like those on West Campus, might have a radius of 3 m and a depth of 1 m . A design engineer would need to know the surface area to determine how much material is needed to build one.
a. Rotate the curve $y=\frac{x^{2}}{9}, 0 \leq x \leq 3$, around the y-axis to create a surface. Sketch the curve and the surface.
$y=\frac{x^{2}}{9}$

$x=3 \sqrt{y}$

b. Use an integral compute the surface area. Simplify your answer. (Hint. Yes, you can do the

$$
=6 \pi \int_{0}^{1} \sqrt{y} \frac{\sqrt{4 y+9}}{\sqrt{4 y}} d y
$$

$$
u=4 y+9, \frac{d u}{4}=d y
$$

$$
=3 \pi \int_{0}^{1} \sqrt{4 y+9} d y=3 \pi \int_{9}^{13} \sqrt{u} \frac{d u}{4}
$$

$$
=\frac{3}{4} \pi\left[\frac{2}{3} u^{3 / 2}\right]_{9}^{13}=\frac{\pi}{2}\left(13^{3 / 2}-27\right)
$$

Math 252 (Bueler): Quiz 3
1 February 2024
EC. [1 points] (Extra Credit) Though I do not know how to find the antiderivatives in problems la and $\mathbf{1 c}$, the integral in lb can be computed exactly. Do so.

$=\int_{1}^{3} \sqrt{1+\frac{x^{2}}{16}-\frac{1}{2}+\frac{1}{x^{2}}} d x$

$$
=\int_{1}^{3} \sqrt{\frac{x^{2}}{16}+\frac{1}{2}+\frac{1}{x^{2}}} d x=\int_{1}^{3} \sqrt{\left(\frac{x}{4}+\frac{1}{x}\right)^{2}} d x
$$

$$
=\int_{1}^{3} \frac{x}{4}+\frac{1}{x} d x=\left[\frac{x^{2}}{8}+\ln (x)\right]_{1}^{3}=\left(\frac{9}{8}+\ln 3\right)-\left(\frac{1}{8}+0\right)
$$

manskgere $=1+\ln 3$

