Name:

\qquad
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [18 points] Compute the following integrals.
a. $\int x e^{-x} d x=$
b. $\int_{1}^{3} x \ln x d x=$
c. $\int \cos x e^{-\sin x} d x=$
d. $\int \cos ^{4} w \sin ^{3} w d w=$
e. $\int \tan ^{2} x \sec ^{2} x d x=$
f. $\int e^{x} \sin x d x=$
2. [7 points] Sketch the region between $y=\sin x$ and the x-axis on the interval $0 \leq$ $x \leq \pi$. Find the volume of the solid which results by rotating the region around the x-axis. (Hint. Use disks.)

Extra Credit. [1 point] Assume n is a large integer. One of these indefinite integrals is much easier than the other. Circle the easier one, and do it.

$$
\int \sec ^{n} x \tan x d x \quad \int \tan ^{n} x \sec x d x
$$

You may find the following trigonometric formulas useful. Other formulas, not listed here, should be in your memory, or you can derive them from the ones here.

$$
\begin{array}{ll}
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta & \sin (a x) \sin (b x)=\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) \\
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta & \sin (a x) \cos (b x)=\frac{1}{2} \sin ((a-b) x)+\frac{1}{2} \sin ((a+b) x) \\
& \cos (a x) \cos (b x)=\frac{1}{2} \cos ((a-b) x)+\frac{1}{2} \cos ((a+b) x)
\end{array}
$$

