: SOLUTIONS \square / 25
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [18 points] Compute the following integrals.
a. $\int x e^{-x} d x=x\left(-e^{-x}\right)-\int\left(-e^{-x}\right) d x=-x e^{-x}+\int e^{-x} d x$

b. $\int_{1}^{3} x \ln x d x=\left[(\ln x) \frac{x^{2}}{2}\right]_{1}^{3}-\int_{1}^{3} \frac{x^{2}}{2} \frac{d x}{x}$

$$
\begin{aligned}
& \text { d. } \int \cos ^{4} w \sin ^{3} w d w=\int \cos ^{4} w\left(1-\cos ^{2} w\right) \sin w d w \\
& =-\int u^{4}\left(1-u^{2}\right) d u=\int u^{6}-u^{4} d u \\
& {\left[\begin{array}{l}
u=\cos w \\
-d u=\sin w d w]=\frac{1}{7} u^{7}-\frac{1}{5} u^{5}+c \\
=\frac{1}{7} \cos ^{7} w-\frac{1}{5} \cos ^{5} w+c
\end{array}\right.} \\
& \text { e. } \int \tan ^{2} x \sec ^{2} x d x=\int u^{2} d u=\frac{1}{3} u^{3}+c \\
& {\left[\begin{array}{l}
u=\tan x \\
d u=\sec ^{2} x d x
\end{array}\right]=\frac{1}{3} \tan ^{3} x+c}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\int e^{x} \sin x d x=e^{x}(-\cos x)-\int(-\cos x) e^{x} d x \\
{\left[\begin{array}{l}
u=e^{x} \\
d=-\cos x \\
d u=e^{x} d x d v e \sin x d x
\end{array}\right]} \\
=-e^{x} \cos x+\int e^{x} \cos x d x \quad\left[\begin{array}{ll}
u=e^{x} & v=\sin x \\
d u=e^{x} d x & d v=\cos x d x
\end{array}\right] \\
=-e^{x} \cos x+\left[e^{x} \sin x-\int \sin x e^{x} d x\right] \\
=-e^{x} \cos x+e^{x} \sin x-I \quad \text { so } 2 I=e^{x}(-\cos x \sin x) \\
\left.2 \quad I=\frac{1}{2} e^{x}(-\cos x+\sin x)+c\right)
\end{array}\right.
\end{aligned}
$$

2. [7 points] Sketch the region between $y=\sin x$ and the x-axis on the interval $0 \leq$ $x \leq \pi$. Find the volume of the solid which results by rotating the region around the x-axis. (Hint. Use disks.)

Extra Credit. [1 point] Assume n is a large integer. One of these indefinite integrals is much easier than the other. Circle the easier one, and do it.

You may find the following trigonometric formulas useful. Other formulas, not listed here, should be in your memory, or you can derive them from the ones here.

$$
\begin{array}{ll}
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta & \sin (a x) \sin (b x)=\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) \\
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta & \sin (a x) \cos (b x)=\frac{1}{2} \sin ((a-b) x)+\frac{1}{2} \sin ((a+b) x) \\
& \cos (a x) \cos (b x)=\frac{1}{2} \cos ((a-b) x)+\frac{1}{2} \cos ((a+b) x)
\end{array}
$$

BLANK SPACE

