Name: \qquad
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [12 points] Compute the following improper integrals, or show that they diverge. Use appropriate limit notation for improper integrals.
a. $\int_{0}^{\infty} x e^{-2 x} d x=$
b. $\int_{-\infty}^{0} \cos \theta d \theta=$
c. $\int_{1}^{3} \frac{1}{\sqrt{3-x}} d x=$
2. [6 points] Sketch the region under the graph $y=\frac{1}{x^{2}}$ on the interval $1 \leq x<\infty$. Then find the volume of the solid from rotating this region around the x-axis.
3. [4 points] Find the general solution of the differential equation $x^{\prime}=t \sqrt{4+t}$.
4. [3 points] Find the particular solution of the differential equation $y^{\prime}=2 x y$ which passes through $\left(0, \frac{1}{2}\right)$ given that $y=C e^{x^{2}}$ is the general solution.

Extra Credit. [1 point] I have no idea how to solve the differential equation

$$
y^{\prime}=\sin (\pi x)+y^{2}
$$

by hand. However, assume the initial condition $y(0)=2$. Then I can approximately compute $y(x)$, at least somewhat beyond $x=0$, by using the differential equation to create a straight line from the initial condition. Do this to give an approximation to $y(0.5)$.

