Math 252 (Bueler): Quiz 6
SOLUTIONS
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [12 points] Compute the following improper integrals, or show that they diverge. Use appropriate limit notation for improper integrals.

$$
\begin{aligned}
& \text { a. } \int_{0}^{\infty} x e^{-2 x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-2 x} d x=\lim _{b \rightarrow \infty}\left[x \frac{\left.e^{-2 x}-2\right]_{0}^{b}}{b} \int_{0}^{b} \frac{e^{-2 x}}{-2} d x\right. \\
& \quad\left[\begin{array}{l}
a x x \\
\left.d x c d x \mid d v=e^{-2 x} d x\right]
\end{array}\right. \\
& =\lim _{b \rightarrow \infty}-b e^{-2 b}+0+\frac{1}{2} \int_{0}^{b} e^{-2 x} d x \\
& =0+\frac{1}{2} \lim _{b \rightarrow \infty}\left[\frac{e^{-2 x}}{-2}\right]_{0}^{b}=\frac{1}{4} \lim _{b \rightarrow \infty}\left(e^{-2 b}+e^{0}\right)=\frac{1}{4} \\
& \text { b. } \int_{-\infty}^{0} \cos \theta d \theta=\lim _{a \rightarrow-\infty} \int_{a}^{0} \cos \theta d \theta
\end{aligned}
$$

$$
=\lim _{a \rightarrow-\infty}[\sin \theta]_{0}^{a}=\lim _{a \rightarrow-\infty} \sin a D N
$$

(diverges)

$$
\begin{aligned}
& \text { c. } \int_{1}^{3} \frac{1}{\sqrt{3-x}} d x=\lim _{b \rightarrow 3^{-}} \int_{1}^{b}(3-x)^{-\frac{1}{2}} d x \quad\left[\begin{array}{l}
u=3-x \\
-d u=d x
\end{array}\right] \\
& =\lim _{b \rightarrow 3^{-}}-\int_{2}^{3-b} u^{-1 / 2} d u=\lim _{b \rightarrow 3^{-}} \int_{3-b}^{2} u^{-1 / 2} d u \\
& =\lim _{b \rightarrow 3^{-}}\left[2 u^{1 / 2}\right]_{3-b}^{2}=\lim _{b \rightarrow 3^{-}} 2 \sqrt{2}-\underbrace{2 \sqrt{3-b}} \tau \lim =0
\end{aligned}
$$

2. [6 points] Sketch the region under the graph $y=\frac{1}{x^{2}}$ on the interval $1 \leq x<\infty$. Now find the volume of the solid from rotating this region around the x-axis.

$$
\begin{aligned}
V & =\int_{1}^{\infty} \pi\left(\frac{1}{x^{2}}\right)^{2} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \pi x^{-4} d x \\
& =\frac{\pi}{-3} \lim _{b \rightarrow \infty}\left[x^{-3}\right]_{1}^{b}=-\frac{\pi}{3} \lim _{b \rightarrow \infty}\left(b^{-3}-1\right) \\
& =-\frac{\pi}{3}(0-1)=\frac{\pi}{3}
\end{aligned}
$$

3. [4 points] Find the general solution of the differential equation $x^{\prime}=t \sqrt{4+t}$.

$$
\begin{array}{r}
x(t)=\int t \sqrt{4+t} d t=\int(u-4) \sqrt{u} d u \\
{[u=4+t, d u=d t]}
\end{array}
$$

4. [3 points] Find the particular solution of the differential equation $y^{\prime}=2 x y$ which passes through $\left(0, \frac{1}{2}\right)$ given that $y=C e^{x^{2}}$ is the general solution.

$$
x=0, \quad y=\frac{1}{2}: \quad \frac{1}{2}=c e^{0^{2}}=c
$$

Math 252 (Bueler): Quiz 6
Extra Credit. [1 point] I have no idea how to solve the differential equation

$$
y^{\prime}=\sin (\pi x)+y^{2}
$$

by hand. However, assume the initial condition $y(0)=2$. Then I can approximately compute $y(x)$, at least somewhat beyond $x=0$, by using the differential equation to create a straight line from the initial condition. Do this to give an approximation to $y(0.5)$.

BLANK SPACE

