Name: \qquad
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [3 points] Find a formula for the nth term a_{n} of the sequence whose first several terms are
$0,3,8,15,24,35,48,63,80,99, \ldots$
2. [5 points] Consider the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
a. Use partial fractions and "telescoping" to write a simplified formula for the partial sum S_{k}.
b. Compute the sum of the infinite series.
3. [6 points] For each sequence, find the limit if it converges, or show that the sequence diverges. Indicate any places where you use L'Hôpital's rule.
a. $\frac{n^{2}}{2^{n}}$
b. $\quad a_{n}=\left(1-\frac{2}{n}\right)^{n}$
4. [3 points] Find a formula for the nth term a_{n} of this recursively-defined sequence, for $n \geq 1$:

$$
a_{1}=3 \quad \text { and } \quad a_{n+1}=\frac{a_{n}}{n}
$$

5. [6 points] Does the series converge or diverge? If it converges find its sum; if it diverges explain why.
a. $\quad 1+\frac{e}{\pi}+\frac{e^{2}}{\pi^{2}}+\frac{e^{3}}{\pi^{3}}+\ldots$
b. $\quad \sum_{n=1}^{\infty} \frac{n+1}{n}$
6. [2 points] Compute and simplify the partial sum S_{4} for the series in $\mathbf{5} \mathbf{b}$.

Extra Credit. [1 point] The thing below is called the Sierpinksi gasket. It is built by removing the white parts from a black square. Assume the original square has side-length one and thus area one. Remove the middle 1/9th of the area. The remainder is 8 smaller black squares. For each of these, remove the middle $1 / 9$ th. Continuing in this way forever, you remove all the white area. Using geometric series, compute the white area you removed. What area is left, the black area?

