Name: _

_____ / 25

30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [3 points] Find a formula for the *n*th term a_n of the sequence whose first several terms are

 $0, 3, 8, 15, 24, 35, 48, 63, 80, 99, \ldots$

2. [5 points] Consider the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

a. Use partial fractions and "telescoping" to write a simplified formula for the partial sum
$$S_k$$
.

b. Compute the sum of the infinite series.

21 March 2024

3. [6 points] For each sequence, find the limit if it converges, or show that the sequence diverges. Indicate any places where you use L'Hôpital's rule.

a.
$$\frac{n^2}{2^n}$$

b.
$$a_n = \left(1 - \frac{2}{n}\right)^n$$

4. [3 points] Find a formula for the *n*th term a_n of this recursively-defined sequence, for $n \ge 1$:

$$a_1 = 3$$
 and $a_{n+1} = \frac{a_n}{n}$.

21 March 2024

5. [6 points] Does the series converge or diverge? If it converges find its sum; if it diverges explain why.

a.
$$1 + \frac{e}{\pi} + \frac{e^2}{\pi^2} + \frac{e^3}{\pi^3} + \dots$$

b.
$$\sum_{n=1}^{\infty} \frac{n+1}{n}$$

6. [2 points] Compute and simplify the partial sum S_4 for the series in **5 b**.

21 March 2024

Extra Credit. [1 point] The thing below is called the **Sierpinksi gasket**. It is built by removing the white parts from a black square. Assume the original square has side-length one and thus area one. Remove the middle 1/9th of the area. The remainder is 8 smaller black squares. For each of these, remove the middle 1/9th. Continuing in this way forever, you remove all the white area. Using geometric series, compute the white area you removed. What area is left, the black area?

BLANK SPACE