
$\square$ / 25
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [3 points] Find a formula for the $n$th term $a_{n}$ of the sequence whose first several terms are $0,3,8,15,24,35,48,63,80,99, \ldots$
$0=1-1$
$3=4-1=2^{2}-1$
$8=9-1=3^{2}-1$
$15=16-1=4^{2}-1$

$(n \geq 1)$
2. [5 points] Consider the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
a. Use partial fractions and "telescoping" to write a simplified formula for the partial sum $S_{k}$.


$$
\begin{aligned}
o n+1 & =A(n+1)+B n \\
& =(A+B) n+A
\end{aligned}
$$ $A+B=0 \rightarrow B=-1$ $S_{k}=\sum_{n=1}^{k} \frac{1}{n(n+1)}$


b. Compute the sum of the infinite series.

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{k \rightarrow \infty} S_{k}=1-0 \neq 1
$$

3. [6 points] For each sequence, find the limit if it converges, or show that the sequence diverges. Indicate any places where you use L'Hôpital's rule.
a. $\frac{n^{2}}{2^{n}}$

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{2^{n}} \stackrel{\left(\pi^{n}+1\right)}{=} \lim _{n \rightarrow \infty} \frac{2 n}{(\ln 2) 2^{n}} \stackrel{\left.(1)^{n}\right)}{=} \lim _{n \rightarrow \infty} \frac{2}{(\ln 2)^{2} 2^{n}}
$$

$$
\stackrel{" 2}{\underline{2} "}=\text { © convenes }
$$


4. [3 points] Find a formula for the $n$th term $a_{n}$ of this recursively-defined sequence, for $n \geq 1$ :

5. [6 points] Does the series converge or diverge? If it converges find its sum; if it diverges explain
why. why.

$$
\text { a. } 1+\frac{e}{\pi}+\frac{e^{2}}{\pi^{2}}+\frac{e^{3}}{\pi^{3}}+\ldots=1+1 \cdot\left(\frac{e}{\pi}\right)+1 \cdot\left(\frac{e}{\pi}\right)^{2}+1 \cdot\left(\frac{e}{\pi}\right)^{3}+\cdots
$$

geometric series with $a=1$ and $r=\frac{e}{\pi}$
note $e<\pi$ so $\frac{e}{\pi}<1$ converge

$$
\begin{aligned}
& 1+\frac{e}{\pi}+\frac{e^{2}}{\pi^{2}}+\cdots=\frac{9}{1-r}=\frac{1}{1-\frac{e}{\pi}}=\frac{\pi}{\pi-e} \\
& \text { b. } \sum_{n=1}^{\infty} \frac{n+1}{n}=\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\cdots \\
& \geq 1+1+1+1+1+\cdots=\infty
\end{aligned}
$$

so diverges
6. [2 points] Compute and simplify the partial sum $S_{4}$ for the series in $\mathbf{5} \mathbf{b}$.

$$
\begin{aligned}
S_{4} & =\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}=\frac{7}{2}+\frac{16+15}{12}=\frac{7}{2}+\frac{31}{12} \\
& =\frac{42+31}{12}=\frac{73}{12}
\end{aligned}
$$

Math 252 (Bueler): Quiz 7
Extra Credit. [1 point] The thing below is called the Sierpinksi gasket. It is built by removing the white parts from a black square. Assume the original square has side-length one and thus area one. Remove the middle $1 / 9$ th of the area. The remainder is 8 smaller black squares. For each of these, remove the middle $1 / 9$ th. Continuing in this way forever, you remove all the white area. Using geometric series, compute the white area you removed. What area is left, the black area?


$$
=\frac{1}{9}+\frac{1}{9}\left(\frac{8}{9}\right)+\frac{1}{9}\left(\frac{8}{9}\right)^{2}+\cdots
$$



BLANK SPACE


