Name: \qquad
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [6 points] Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$.
a. Use the integral test to show that this series converges.
b. Use a comparison test to show this series converges. (Please state which series you are comparing to, and why it converges.)
2. [3 points] Does the series $\sum_{n=2}^{\infty} \sin n$ converge or diverge? Explain, and identify any tests you use.
3. [9 points] Use the comparison test or the limit comparison test to determine whether the following series converge or diverge. (Please state which comparison test you are using, and what series you are comparing to.)
a. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}}$
b. $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}-2^{n}}$
c. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
4. [3 points] Sketch a partial sum S_{N} of the harmonic series, as the total area of rectangles of width one. (Please label axes appropriately.)
5. [2 points] Consider the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p<0$. Show that such p-series diverge. Apply the divergence test.
6. [2 points] Simplify the following expression, that is, write it without the factorial or any "...": $\frac{n!}{(n+3)!}$

Extra Credit. [1 point] My computer says that the 20th partial sum of the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ is $S_{20}=1.082284588$. How accurate is this as an approximation of the exact infinite sum? Use an integral to estimate the size of the remainder R_{20}.

