Name: \qquad
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [8 points] Do the series converge absolutely, converge conditionally, or diverge? Show your work, identify tests you used, and circle one answer.
a. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$

CONVERGES
ABSOLUTELY
b. $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{n!}$
2. [8 points] Use the ratio or root test to determine whether the series converges or diverges. Show your work.
a. $\sum_{n=0}^{\infty} \frac{n 2^{n}}{3^{n}}$
b. $\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{k}}{k!}$ where x is any real number
3. [9 points] Use any test to determine whether the series converges or diverges. Show your work.
a. $\sum_{n=1}^{\infty} \frac{1}{(1+\ln n)^{n}}$
b. $\sum_{n=1}^{\infty} n^{3 / 2}$
c. $\sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt{n+1}-\sqrt{n})$

Extra Credit. [1 point] Consider the alternating series $S=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$. (It is conditionally convergent.) How many terms N are needed so that the partial $\operatorname{sum} S_{N}=\sum_{n=2}^{N} \frac{(-1)^{n}}{\ln (n)}$ is within 0.01 of the correct value S ?

