
\square / 25
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [8 points] Do the series converge absolutely, converge conditionally, or diverge? Show your work, identify tests you used, and circle one answer.
a. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
$b_{n}=\frac{1}{\sqrt{n}}$
$\lim _{n \rightarrow \infty} b_{n}=0$ \& b_{n} decreasing
converges by AST

$$
\text { but } \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}} d \text { bergen }(p=1 / 2)
$$

CONVERGES ABSOLUTELY

b. $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{n!} \quad|\cos (\pi n)|=\left|(-1)^{n}\right|=1$

$$
\frac{1}{n!} \leq \frac{1}{n^{2}} \quad(\text { for } n \geq 4)
$$

so converges by companion test ($p=2$)

CONVERGES CONDITIONALLY

Math 252 (Bueler): Quiz 9
2. [8 points] Use the ratio or root test to determine whether the series converges or diverges. Show your work.
ratio test also works dine

a. $\sum_{n=0}^{\infty} \frac{n 2^{n}}{3^{n}}$
root test:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n 2^{n}}{3^{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n} \cdot 2}{3}
$$

Math 252 (Bueler): Quiz 9
4 April 2024
3. [9 points] Use any test to determine whether the series converges or diverges. Show your work.
a. $\sum_{n=1}^{\infty} \frac{1}{(1+\ln n)^{n}}$
rout test:

so

b. $\sum_{n=1}^{\infty} n^{3 / 2}$
divergence test: $\quad \lim _{n \rightarrow \infty} n^{3 / 2}=\infty \neq 0$

c. $\sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt{n+1}-\sqrt{n})$

$$
b_{n}=\sqrt{n+1}-\sqrt{n}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}
$$

$$
=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}
$$

So $\lim _{n \rightarrow \infty} b_{n}=0$
and \qquad decreases
So
by AST

$$
\leftarrow_{s} \underbrace{x}
$$

Math 252 (Bueler): Quiz 9
Extra Credit. [1 point] Consider the alternating series $S=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$. (It is conditionally convergent.) How many terms N are needed so that the partial $\operatorname{sum} S_{N}=\sum_{n=2}^{N} \frac{(-1)^{n}}{\ln (n)}$ is within 0.01 of the correct value S ?

$$
\left|R_{N}\right| \leq b_{N+1}=\frac{1}{\ln (N+1)} \leq 0.07
$$

want this $\ln (N+1) \geq \frac{1}{0.01}=100$

