1. Let $R$ be the region bounded by the graph of $f(x)=1+\sqrt{x}, g(x)=e^{-3 x}$ and the vertical line $x=1$. Sketch the region $R$.
(a) Set up, but do not solve, an integral that gives the area of $R$.
(b) Set up, but do not solve, an integral that finds the volume of the solid when $R$ is rotated about the $x$-axis.
(c) Set up, but do not solve, an integral that finds the volume of the solid when $R$ is rotated about the line $y$-axis.
2. Evaluate the following integrals.
(a) $\int \sin ^{5}(2 x) \cos ^{2}(2 x) d x$
(b) $\int \frac{2 x^{2}+3 x-2}{x^{3}-x^{2}} d x$
(c) $\int \tan ^{-1}\left(\frac{x}{2}\right) d x$
(d) $\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x$
3. Let $a_{n}=\ln \left(\frac{2 n^{2}+1}{3 n^{2}+4}\right)$.
(a) Determine whether the sequence $a_{n}$ converges. If it is convergent determine what it converges to.
(b) Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ converges or diverges.
4. Determine if the series below converge or diverge. Full credit will only be given for answers that include ( 1 pt ) the name of the test being applied, ( 5 pts ) a complete application of the test, including evidence that the conditions have been met, and ( 1 pt ) a clear conclusion with justification.
(a) $\sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n^{3}+2}$
(b) $\sum_{n=1}^{\infty} \frac{\sin (3 n)}{2+n^{4}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}+\sqrt{n}}$
(d) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3 / 2}}$
5. Find the sum of the following series exactly.
a) $\sum_{n=1}^{\infty}(-3)^{n+1} 5^{-n}$
b) $\sum_{n=0}^{\infty} \frac{(-1 / 2)^{n}}{n!}$
