Midterm II Practice Problems

1. a. -use limit notation, correctly

- use integral notation correctly
b.

$$
\begin{aligned}
& \left.\int_{2}^{5} \frac{3 x}{x^{2}-4} d x=\lim _{a \rightarrow 2^{-}} \int_{a}^{5} \frac{3 x d x}{x^{2}-4}=\lim _{a \rightarrow 2^{-}}\left(\frac{3}{2} \ln \left(x^{2}-4\right)\right]_{a}^{5}\right) \\
= & \lim _{a \rightarrow 2^{-}}(\frac{3}{2} \ln (21)-\frac{3}{2} \underbrace{\ln (a-4)}_{-\infty})=\infty ; \text { diverges. }
\end{aligned}
$$

2. (a) $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}$
(b) $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}$, So the sequence converges.
(c) $\sum_{n=1}^{\infty} \frac{n}{2 n+1}$
(d) The series diverges by the Divergence Test.

- $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2} \neq 0$. .application of test
(e) $S_{1}=\frac{1}{3}, S_{2}=\frac{1}{3}+\frac{2}{5}=\frac{11}{15}, S_{3}=\frac{1}{3}+\frac{2}{5}+\frac{3}{7}=\frac{122}{105}$

The sequence $S_{1}, S_{2}, S_{3}, S_{4}, \ldots$ diverges because the series $\sum \frac{n}{2 n+1}$ diverges.
3. a. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 \sqrt{n}+\pi}$ converges by Alternating Series Test

Application of Test
Application of test
$\cdot b_{n}=\frac{1}{3 \sqrt{n}+\pi} ; b_{n+1}=\frac{1}{3 \sqrt{n+1}+\pi}<\frac{1}{3 \sqrt{n}+1}+b_{n}$ decreasing

- $\lim _{n \rightarrow \infty} \frac{1}{3 \sqrt{n}+\pi}=0$
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{e}} \quad$ converges by showing it's absolutely
$\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n^{e}}\right|=\sum_{n=1}^{\infty} \frac{1}{n e}$, a convergent p-series where $p=e>1$.
c. $\sum_{n=1}^{\infty} \frac{5}{n+\ln (n)}$, diverges by limit comparison test

Compare to $\sum_{n=1}^{\infty} \frac{1}{n}$, a divergent p-series.

$$
\lim _{n \rightarrow \infty} \frac{\frac{5}{n+\ln (n)}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{5 n}{n+\ln (n)}=\lim _{n \rightarrow \infty} \frac{5}{1+\frac{\ln (n)}{n}}=5
$$

d. $\sum_{n=1}^{\infty} \frac{10^{n}}{(2 n)!}$ converges by the Ratio Test

$$
\lim _{n \rightarrow \infty} \frac{\frac{10^{n+1}}{(2 n+2)!}}{\frac{10^{n}}{(2 n)!}}=\lim _{n \rightarrow \infty} \frac{10^{n+1}}{(2 n+2)!} \cdot \frac{(2 n)!}{10^{n}}=\lim _{n \rightarrow \infty} \frac{10}{(2 n+2)(2 n+1)}=0<1
$$

e. $\sum_{n=0}^{\infty} \frac{n 2^{n}}{5^{n}}$ converges by the root test

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n 2^{n}}{5^{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n} \cdot 2}{5}=\frac{2}{5}<1
$$

f. $\sum_{n=2}^{\infty} \frac{\sin ^{3}(n)}{n^{2}+1}$ converges absolutely (direct) comparison test

Compare to $\sum \frac{1}{n^{2}}$, a convergent p-series.
$\left|\sin ^{3}(n)\right| \leq 1$ and $\frac{1}{n^{2}+1} \leq \frac{1}{n^{2}}$.
So $\left|\frac{\sin ^{3}(n)}{n^{2}+1}\right|<\frac{1}{n^{2}}$. So $\sum\left|\frac{\sin ^{3}(n)}{n^{2}+1}\right|$ converges.
(4) Apply Integral Test to $\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$

$$
\left.\int_{0}^{\infty} \frac{d x}{x^{2}+1}=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{x^{2}+1}=\lim _{b \rightarrow \infty} \arctan x\right]_{0}^{b}
$$

$$
=\lim _{b \rightarrow \infty} \arctan b-\arctan 0=\pi / 4 . \text { So the series } \begin{gathered}
\text { converges. }
\end{gathered}
$$

(5) $\sum_{n=2}^{\infty} \frac{(-2)^{n}}{7^{n}}=\sum_{n=2}^{\infty}\left(\frac{4}{49}\right)\left(\frac{-2}{7}\right)^{n-2}=\sum_{k=0}^{\infty} a r^{k}$

The series is geometric with $a=\frac{4}{49}$ and $r=\frac{-2}{7}$.
It converges because $|r|=\left|\frac{-2}{7}\right|<1$.
If converges to $\frac{2 / 49}{1-\left(\frac{-2}{7}\right)}=\frac{2 / 49}{\frac{9}{7}}=\frac{2}{49} \cdot \frac{7}{9}=\frac{2}{63}$
(6) $\sum_{n=0}^{\infty} \frac{1}{3^{n}}(x-1)^{n}=\sum_{n=0}^{\infty}\left(\frac{x-1}{3}\right)^{n}$-geometric

So the series converges if and only if

$$
\begin{array}{r}
\left|\frac{x-1}{3}\right|<1 . \text { So }|x-1|<3 \\
\\
-3<x-1<3 \\
\\
-2<x<4
\end{array}
$$

answer: $(-2,4)$
(7) $\frac{2 x}{3+x}=\frac{\frac{2}{3} x}{1+\frac{x}{3}}=\frac{\frac{2}{3} x}{1-\left(\frac{-x}{3}\right)}=\sum_{n=0}^{\infty} \frac{2}{3} x\left(\frac{-x}{3}\right)^{n}$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot 2 \cdot x^{n+1}}{3^{n+1}}
$$

8.

$$
\begin{aligned}
& f(x)=e^{2 x} \\
& f^{\prime}(x)=2 e^{2 x} \\
& f^{\prime \prime}(x)=2^{2} e^{2 x} \\
& f^{\prime \prime}(x)=2^{3} e^{2 x} \\
& \vdots \\
& f^{(n)}(x)=2^{n} e^{2 x} \\
& f^{(n)}(1)=2^{n} e^{2}
\end{aligned}
$$

