Some of the Big Ideas behind today's formulas
 formula for area of a rectangle:

The integral adds up all the rectangles from $x=a$ to $x=b$.

Now, apply the same principle to Volume

- Find formula for tiny slice of volume
- Use the integral to add up all the slices.

$$
V=\int_{a}^{b} \text { (volume of tiny slice) }
$$

$$
=\int_{a}^{b} \underbrace{A(x)}_{\text {area }} d x_{\text {thickness }}^{A}
$$

1. Sketch the region R bounded by $y=\sqrt{x}, y=0$, and $x=4$. Determine the volume of the solid with cross-sections perpendicular to the base and parallel to the y-axis are squares. Attempt to describe and/or draw what this solid looks like.

$$
V=\int_{0}^{4}(\sqrt{x})
$$

$$
V=\int_{a}^{b} A(x) d x
$$

A- area of cross-section
$d x$ - thickness of slice.
3. Sketch the same region as in problem 1 above (ie. the region R bounded by $y=\sqrt{x}, y=0$, and $x=4$). Find the volume of the solid obtained by rotating this region about the x-axis. Attempt to

4. The Disk Method

$$
V=\int_{a}^{b} \pi r^{2} d x=\int_{a}^{b} \pi(f(x))^{2} d x
$$

5. Sketch the region bounded by $y=x^{2 / 3}$ (sketched below), $x=0$ and $y=1$. Find the volume of the solid obtained by rotating this region about the y-axis. Attempt to describe and/or draw what this solid looks like.

$$
\left(y y^{3 / 2}=\left(x^{2 / 3}\right)^{3 / 2}\right.
$$

So $x=f(y)=y^{3 / 2}$

$$
\begin{aligned}
V=\int_{0}^{1}\left(y^{3 / 2}\right)^{2} d y & =\int_{0}^{1} y^{3} d y \\
& \left.=\frac{1}{4} y^{4}\right]_{0}^{1}=\frac{1}{4}
\end{aligned}
$$

6. Sketch the region bounded by $y=\sqrt{x}$ and $y=x^{2}$. Find the volume of the solid obtained by rotating this region about the x-axis. Attempt to describe and/or draw what this solid looks like.

7. The Washer Method

$$
V=\int_{a}^{b} \pi\left(R^{2}-r^{2}\right) d x=\pi \int_{a}^{b}[f(x)]^{2}-[g(x)]^{2} d x
$$

8. Find the volume of the solid obtained by rotating about the y axis the region bounded by $y=x^{2}$ and $y=4 x$. (Sketch the region. Draw a slice.)
