1. In the space below, write the formulas for the Disk Method and the Washer Method with accomponying formulas. Assume we are integrating with respect to x. $f(x)$

2. Sketch the region R bounded by $y=\frac{1}{1+x^{2}}, y=0$, and $x=2$. (The graph of $y=\frac{1}{1+x^{2}}$ is sketched for you below.) We want to determine the volume of the solid obtained by rotating R about the y-axis.

(a) If we wanted to use the Disk Method, how would we slice the region R ? Explain why this choice would be inconvenient? Slice horizontally.
(1) Requires two integrals
(2) Requires Solving $y=\frac{1}{1+x^{2}}$
(b) Slice the region R vertically and sketch the shape that slice would make on the figure above. Describe the shape in words.
The sides of a can.
Different x-values give different can heights.
(c) In the space below, we will set up and evaluate the integral for the volume of this solid.

$$
\begin{aligned}
& V=\int_{0}^{2} 2 \pi x\left(\frac{1}{1+x^{2}}\right) d x=2 \pi \int_{0}^{2} \frac{x d x}{1+x^{2}}=\pi \ln (1 \\
& \pi(\ln (5)-\ln (1))=\pi \ln (5) \approx 5.056
\end{aligned}
$$

circumference
3. Determine the formula for the volume of a cylindrical shell.
formula obtained by un rolling the

$$
V=2 \pi r h d x
$$ can.

r-radius of top of cylinder
h - height of cylinder

4. Use the formula for the volume of a cylindrical shell, to deduce the Method of Cylindrical Shells formula. Draw an accompanying picture.

$$
V=\int_{0}^{1} 2 \pi(x)\left(e^{x^{2}}-(1-x)\right) d x=2 \pi \int_{0}^{1}\left(x e^{x^{2}}-x+x^{2}\right) d x
$$

5. Sketch the region bounded above by $y=e^{x^{2}}$, below by $y=1-x$, and on the right by $x=1$. Use the Method of Cylindrical Shells to find the volume of the solid obtained by rotating R about the y-axis. (Note $y=e^{x^{2}}$ is already graphed for you below.)

$$
\begin{aligned}
\lambda^{\hat{h}} & =2 \pi\left(\frac{1}{2} e-\frac{1}{2}+\frac{1}{3}-\frac{1}{2}\right) \\
& =2 \pi\left(\frac{1}{2} e-1+\frac{1}{3}\right)=\left(e-\frac{4}{3}\right) \pi
\end{aligned}
$$

6. Repeat the problem 5, but slice the region horizontally and use disks/washers.

$$
\begin{aligned}
V & =\pi \int_{0}^{1}(1-(1-y))^{2} d y+\pi \int_{1}^{e}(1-\sqrt{\ln y})^{2} d y \\
& =\pi \int_{0}^{1} y^{2} d y+\pi \int_{1}^{e}(1-2 \sqrt{\ln y}+\ln y) d y
\end{aligned}
$$

ugh! integrate?

