DAY 2
Set up, but do not evaluate, definite integrals for these length and area problems.

1. Find the length of the curve $y=e^{x}$ from $x=0$ to $x=1$.

$$
A L=\int_{0}^{1} \sqrt{1+e^{2 x}} d x
$$

$$
\overline{\bar{\tau}} 2.0035 \ldots
$$

wolfram alpha

$$
\begin{aligned}
y & =e^{x} \\
y^{\prime} & =e^{x} \\
\left(y^{\prime}\right)^{2} & =\left(e^{x}\right)^{2} \\
& =e^{2 x}
\end{aligned}
$$

2. Find the surface area of the surface of revolution from rotating $y=e^{x}$ from $x=0$ to $x=1$ around the x-axis.

$$
S A=\int_{0}^{1} 2 \pi e^{x} \sqrt{1+\left(e^{x}\right)^{2}} d x \underset{\substack{\text { wolfram } \\ \text { siphon }}}{\bar{\eta}} 22.943
$$

3. Find the length of the curve $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}$ from $x=1$ to $x=2$.

$$
\begin{array}{rlrl}
y & =\frac{1}{4} x^{4}+\frac{1}{8} x^{-2} & A L & =\int_{1}^{2} \sqrt{1+x^{6}-\frac{1}{2}+\frac{1}{16} x^{-6}} d x \\
y^{\prime} & =x^{3}-\frac{1}{4} x^{-3} & =\int_{1}^{2} \sqrt{x^{6}+\frac{1}{2}+\frac{1}{16} x^{-6}} d x=\int_{1}^{2} \sqrt{\left(x^{3}+\frac{1}{4} x^{-3}\right)^{2}} d x \\
\left(y^{\prime}\right)^{2} & =\left(x^{3}-\frac{1}{4} x^{-3}\right) & =\int_{1}^{2}\left(x^{3}+\frac{1}{4} x^{-3}\right) d x=\frac{1}{4} x^{4}-\frac{1}{8}+\left.\frac{1}{16} x^{-2}\right|_{1} ^{2} \\
& =\left(4-\frac{1}{32}\right)-\left(\frac{1}{4}-\frac{1}{8}\right)=\frac{123}{32}
\end{array}
$$

4. Find the surface area of the surface of revolution from rotating $y=x^{2}$ from $x=0$ to $x=1$ around

$$
\begin{aligned}
& x=y^{1 / 2} \\
& x^{\prime}=\frac{1}{2} y^{-1 / 2}
\end{aligned}
$$

$$
\left(x^{\prime}\right)^{2}=\frac{1}{4} y^{-1}
$$

$$
S A=2 \pi \int_{0}^{1} y^{\frac{1}{2}} \sqrt{1+\frac{1}{4 y}} d y=2 \pi \int_{0}^{1} \sqrt{y+\frac{1}{4}} d y
$$

use $y^{\frac{1}{2}}=\sqrt{y}$

$$
\left.=2 \pi \cdot \frac{2}{3}\left(y+\frac{1}{4}\right)^{\frac{3}{2}}\right]_{0}^{1}=\frac{4}{3} \pi\left[\left(\frac{5}{4}\right)^{3 / 2}+\left(\frac{1}{4}\right)^{3 / 2}\right]
$$

5. Find the length of the curve $x^{2 / 3}+y^{2 / 3}=4$ (graphed below).

$$
\begin{aligned}
& y^{2 / 3}=4-x^{2 / 3} \\
& y=\left(4-x^{2 / 3}\right)^{3 / 2} \\
& y^{\prime}=\frac{3}{2}\left(4-x^{2 / 3}\right)^{1 / 2} \cdot\left(-\frac{2}{3} x^{-\frac{1}{3}}\right)=\frac{-\left(4-x^{2 / 3}\right)^{\frac{1}{2}}}{x^{1 / 3}} \\
& \left(y^{\prime}\right)^{2}=\left(4-x^{2 / 3}\right)\left(x^{-\frac{2}{3}}\right)=4 x^{-2 / 3}-1 \\
& \left(y^{\prime}\right)^{2}+1=4 x^{-2 / 3} \cdot ; \sqrt{1+\left(y^{\prime}\right)^{2}}=2 x^{-1 / 3}
\end{aligned}
$$

$$
A L=4 \int_{0}^{8} 2 x^{-1 / 3} d x
$$

$$
\begin{aligned}
& A L=4 \int_{0}^{8} 2 x^{-1 / 3} d x \leftarrow \text { is this a valid } \\
& \text { integral? }
\end{aligned}
$$

6. Now do triage. Which of the integrals in problems $\mathbf{1}$ through $\mathbf{5}$ can actually be computed by hand? Try those. For the others, go online and use your favorite tool to compute values for the definite integrals.
