Section 2.4: Arc Length of a Curve and Surface Area

$$
\begin{aligned}
& \text { Arc Length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& \text { If } x=g(y): A L=\int_{c}^{d} \sqrt{1+g^{\prime}(y)} d y \\
& \text { on } c \leqslant y \leqslant d:
\end{aligned}
$$

$\frac{4}{9} d u=d x$ $\int_{1 e t} \quad u=1+\frac{9}{4} x, d u=\frac{9}{4} d x$

$$
\begin{aligned}
& \text { 2. Use the formula above to find the arc length of } y=x^{3 / 2} \text { from }(1,1) \text { to }(2,2 \sqrt{2}) \text {. } \\
& A L=\int_{1 / 2}^{2} \sqrt{1+\left(\frac{3}{2} x^{\frac{1}{2}}\right)^{2}} d x=\int_{1}^{2} \sqrt{1+\frac{9}{4} x} d x=\frac{\int_{9}^{9}}{\frac{1}{2} / 4 / x^{\frac{1}{4}}} u^{\frac{1}{2}} d u \\
& \begin{aligned}
x=1, u & =+\frac{9}{4} \\
& =\frac{13}{4}
\end{aligned} \\
& \begin{aligned}
& x=2, u=1+18 \frac{18}{4} \\
&=\frac{22}{4}
\end{aligned} \\
& =\frac{4}{9}\left(\left.\frac{2}{3} u^{\frac{3}{2}}\right|_{\frac{23}{4}} ^{\frac{13}{4}}=\frac{8}{27}\left(\left(\frac{22}{4}\right)^{\frac{3 / 2}{4}}-\left(\frac{13}{4}\right)^{3 / 2}\right) \approx 2.09\right. \\
& y^{\prime}=\frac{3}{2} x^{\frac{1}{2}}
\end{aligned}
$$

3. Where does the arc length formula come from?

$$
\begin{aligned}
& \text { Slope of } \\
& \text { secant }
\end{aligned}=m=\frac{f(b)-f(a)}{b-a}
$$

Alt. View

Then, there is $a c$ between $a+b$ if aug vel. from $t=a$ to $t=b$ is 60 mph , at some point you went exactly 60 mph .

- Approx curve with small straight line segments.
- Zoom in on a particular segment:

$$
\begin{aligned}
& =\sqrt{\left(\frac{(\Delta x)^{2}+\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)^{2}}{l}\right) \cdot \frac{\Delta x^{2}}{\Delta x^{2}}}=\sqrt{1+\left(\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{\Delta x}\right)^{2}} \Delta x \\
& =\sqrt{1+\left(f^{\prime}\left(x_{3}\right)\right)^{2}} \Delta x
\end{aligned}
$$

4. Surface Area Formula (for surfaces of revolution)

rotate curve about x-axis to obtain
x-axis to obtain
a $\frac{\text { sur face. }}{5 \text {. Find the area of the surface obtained }}$.

8 ($\quad S A=2 \pi \int_{1}^{5} x^{3}\left(1+9 x^{4}\right)^{1 / 2} d x=\frac{2 \pi}{36} \int_{10}^{145} u^{\frac{1}{2}} d u$
$\Rightarrow f(x)=x^{3}$
$u=1+9 x^{4}$

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2} \\
\left(f^{\prime}(x)\right)^{2} & =9 x^{4}
\end{aligned}
$$

$$
d u=36 x^{3} d x
$$

$$
=\left.\frac{\pi}{18} \cdot \frac{2}{3} u^{3 / 2}\right|_{10} ^{145}
$$

$$
\frac{1}{36}=x^{3} d x
$$

$$
x=1, u=10 ; x=2, u=145
$$

$$
=\frac{\pi}{27}\left(145^{3 / 2}-10^{3 / 2}\right)
$$

≈ 199.48
6. Where does the Surface Area Formula come from?
 $f(x)$ smooth

- Approx curve a/ polygonal shape
- Approx surface by rotating polygonal shape.
- Zoom in on a single segment

$$
\begin{aligned}
& \rightarrow \text { a } \\
& 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& \rightarrow 2 \pi r=\text { circameferens of } \\
& \text { radius } r=f(x) \\
& 2 \pi\left(\frac{R+r}{2}\right)=\pi(R+r)=
\end{aligned}
$$

