1. Recall how we calculated work given both (a) a constant force and (b) a variable force.
(3.)

$$
W=F \cdot d
$$

(b)

$$
W=\int_{a}^{b} \underbrace{F(x)}_{\mathcal{F}} d x
$$

units • lb, ft, ft. lb

$$
\cdot N, m, N \cdot m=J
$$

2. A rectangular fuel oil tank has dimensions $1 \mathrm{~m} \times 1 \mathrm{~m}$ on the base and is 3 m in height. Assume the depth of the oil in the tank is 2 m . How much work is required to pump all the oil out of the top of the tank.
(Facts to use: No. 2 fuel oil is roughly $900 \mathrm{~kg} / \mathrm{m}^{3}$. Hence, So the weight (force) density at sea level on earth, of heating oil, is $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot\left(900 \mathrm{~kg} / \mathrm{m}+{ }^{3}\right)=8829 \mathrm{~N} / \mathrm{m}^{3}$. This means that a cubic meter of oil on a scale would push down 8829 N , compared to 1 kg of something pushing 9.81 N .)

- Different slices of liquid are moved/lifted different distars
- So here distance $\underset{\underline{d}}{ }$ is not constant!
- Pick an orientation. $\left\{\begin{array}{l}\text { So x height } \\ \text { of oil. }\end{array}\right.$
- Integrates w/ $d x$ from $x=0$ to $x=2$
- For a slice w/ height x and thickness $d x$

$$
\begin{aligned}
& \begin{array}{l}
F=(\text { weight of slice })=\underbrace{(1.1 \cdot d x) m^{3}}_{V} \cdot \underbrace{\left(\frac{8829 \mathrm{~N}}{\mathrm{~m}^{3}}\right)}_{F / \mathrm{N}}=8829 \mathrm{~N} . \\
d=3-x
\end{array} \\
& W=\int_{0}^{2} 8829(3-x) d x=8829 \int_{0}^{2}(3-x) d x \\
& =8829\left(3 x-\frac{1}{2} x^{2}\right)_{0}^{2}=8829(6-2)=35316 \mathrm{Nm} \\
& \frac{38139}{35316} \\
& =35316 \mathrm{~J}
\end{aligned}
$$

1. Recall how we calculated work given both (a) a constant force and (b) a variable force.
2. A rectangular fuel oil tank has dimensions $1 \mathrm{~m} \times 1 \mathrm{~m}$ on the base and is 3 m in height. Assume the depth of the oil in the tank is 2 m . How much work is required to pump all the oil out of the top of the tank.
(Facts to use: No. 2 fuel oil is roughly $900 \mathrm{~kg} / \mathrm{m}^{3}$. Hence, So the weight (force) density at sea level on earth, of heating oil, is $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot\left(900 \mathrm{~kg} / \mathrm{m}+{ }^{3}\right)=8829 \mathrm{~N} / \mathrm{m}^{3}$. This means that a cubic meter of oil on a scale would push down 8829 N , compared to 1 kg of something pushing 9.81 N .)
