1. Recall how we calculated work given both (a) a constant force and (b) a variable force. Recall units.
2. A rectangular fuel oil tank has dimensions $1 \mathrm{~m} \times 1 \mathrm{~m}$ on the base and is 3 m in height. Assume the depth of the oil in the tank is 2 m . Calculate how much work is required to pump all the oil out of the top of the tank.
(Facts to use: No. 2 fuel oil is roughly $900 \mathrm{~kg} / \mathrm{m}^{3}$. Hence, So the weight (force) density at sea level on earth, of heating oil, is $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot\left(900 \mathrm{~kg} / \mathrm{m}^{3}\right)=8829 \mathrm{~N} / \mathrm{m}^{3}$. This means that a cubic meter of oil on a scale would push down 8829 N , compared to 1 kg of something pushing 9.81 N .)
