1. Short tutorial on Work
W-work units:
F - force
d -distance
If F is constant,

$$
W=F \cdot d
$$

2. Basic Work Examples

What if the force, F, is not constant?

	d	F	W
English	$f t$	e^{\prime}	$f t \cdot l b$
Metric	m	N	$N \cdot m$ $=J$

N. Newton
J-Joule
(a) In the 1976 Olympics, Vasili Alexeev set a world record when lifting 562 lb from the floor to above his head (approx. 6.5 feet). The 1985 Guinness Book of World Records claimed that, in 1957, Paul Anderson used his back to lift 6270 lb of lead and automobile parts 1 cm . Who did more work? (Note: 1 cm is approximately 0.033 feet.)
constant forces

$$
\begin{aligned}
& \mathrm{W} \text { by Alexeev }=(562 \mathrm{eb})(6.5 \mathrm{ft})=3653 \mathrm{ft} \cdot \mathrm{eb} \\
& \mathrm{~W} \text { by Anderson }=(6270 \mathrm{eb})(0.033 \mathrm{ft})=206.91 \mathrm{ft} \cdot \mathrm{eb}
\end{aligned}
$$

(b) Compute the work done by a force of $F(x)=\frac{1}{1+x} \mathrm{~N}$ from $x=0$ meters to $x=3$ meters.

$$
\begin{aligned}
W=\int_{0}^{3} F(x) d x=\int_{0}^{3} \frac{1}{1+x} d x & =\ln (1+x)]_{0}^{3} \\
& =\ln (4)-\ln (1) \\
& =\ln (4) N \cdot m=\ln (4) \mathrm{J}
\end{aligned}
$$

3. Springs and Work

where x-displacement from, k-spring natural length, constant
(a) A spring has a natural length of 1 m and when stretched to 1.5 meters exerts a force of 3 N . Find the work required to stretch the spring from 1 m (its natural position) to 2 m .

- Find k

$$
\begin{aligned}
& 3 N=K(0.5 \mathrm{~m}) \\
& K=\frac{3}{0.5}=6 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
W=\int_{0}^{1} \underset{F(x)}{6 x} \underset{\prod_{\text {list }}}{d x}=\left.3 x^{2}\right|_{0} ^{1} & =3 \mathrm{~N} \cdot \mathrm{~m} \\
& =3 \mathrm{~J}
\end{aligned}
$$

$$
N \mathrm{~m}
$$

(b) A spring has a natural length of 0.3 m and requires 2 J to stretch the spring to 0.4 m . Find the work required to to stretch the spring from 0.4 m to 0.5 m .

$$
\begin{aligned}
& \text { - Find } k \text {. } \\
& 2=\int_{0}^{0.1} k x d x \\
& 2=\left.\frac{k}{2} x^{2}\right|_{0} ^{\frac{1}{10}}=\frac{k}{200}, k=400 \mathrm{~N} / \mathrm{m} \text {. So } W=\int_{0.1}^{0.2} 400 x d x=\left.200 x^{2}\right|_{0.1} \\
& =200\left(\left(\frac{2}{10}\right)^{2}-\left(\frac{1}{10}\right)^{2}\right)=200\left(\frac{3}{100}\right)=6 \mathrm{~N} \cdot \mathrm{~m}=6 \mathrm{~J}
\end{aligned}
$$

5. A First Look at Calculating Mass

- mass of 1-dim'l objects. What if the density is not uniform?
- density, ρ, units $\mathrm{lb} / \mathrm{ft}$

$$
\text { mass }=m=\int_{a}^{b} \rho(x) d x \int_{\text {more dense less ce }}^{\text {ting }}
$$ or kg / m

6. Basic Examples: Calculate the densities of the objects below.
(a) A 3-ft long metal rod with density $2 \mathrm{lb} / \mathrm{ft}$

$$
m a s s=\underbrace{(3 f t)}_{\text {length density or }}(2 \mathrm{eb} / f t)=6 \mathrm{lb} .
$$ different x 's give different densities!

(b) A 3-ft long metal rod with density function $\rho(x)=4 x+1 \mathrm{lb} / \mathrm{ft}$ (starting at $x=0$).

$$
\begin{aligned}
\text { mass }=\int_{0}^{3}(4 x+1) \cdot d x=2 x^{2}+\left.x\right|_{0} ^{3} & =2 \cdot 9+3 \\
& =21 \text { lb } .
\end{aligned}
$$

