1. Intro to Moments and Center of Mass in One Dimension with Point Masses

Principle:
To archive balance

we need $\left|\bar{x}-x_{1}\right| \cdot m_{1}=\left|\bar{x}-x_{2}\right| \cdot m_{2} \mid$

Solve for \bar{x} to get

$$
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

moment

2. For the masses and locations below, (a) make a guess about the location of the center of mass, then (b) use the work from \#1 above to find it precisely.

$$
m_{1}=2 \text { at } x_{\mathbf{1}}=0, m_{2}=4 \text { at } x_{2}=2, \text { and } m_{3}=10 \text { at } x_{3}=10 .
$$

(b) moment $=M=\sum_{i=1}^{3} m_{i} x_{i}=2 \cdot 0+4 \cdot 2+10 \cdot 10=108$

$$
\begin{aligned}
& \text { mass }=m=\sum_{i=1}^{3} m_{i}=2+4+10=16 \\
& \bar{x}=\frac{M}{m}=\frac{108}{16}=6.75
\end{aligned}
$$

3. Intro to Moments and Center of Mass in One Dimension with Continuous Density

v. thin rod. density $e(x)$.

$$
\text { \$2.5: } m=\int_{a}^{b} e(x) d x
$$

$$
\bar{x}=\frac{M}{m}=\frac{\int_{a}^{b} x e^{(x)} d x}{\int_{a}^{b} e^{(x)} d x}
$$

$$
\text { moment }=M=\int_{a}^{b} x e(x) d x
$$

4. Compute the center of mass for a thin rod with density $\rho(x)=12 x^{2} \mathrm{~kg} / \mathrm{m}$ assuming one end of the rod is at $x=0 \mathrm{~m}$ and the other is at $x=2 \mathrm{~m}$.
Guess \bar{x} way closer to $x=2$ than $x=0$.

$$
\begin{array}{rlr}
m & =\int_{0}^{2} 12 x^{2} d x=\left.4 x^{3}\right|_{0} ^{2}=32 & \bar{x}=\frac{48}{32}=1.5 \\
M & =\int_{0}^{2} x\left(12 x^{2}\right) d x=\int_{0}^{2} 12 x^{3} d x \\
& \left.=3 x^{4}\right]_{0}^{2}=48
\end{array}
$$

5. Intro to Moments and Center of Mass in Two Dimensions

$$
C(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)
$$

density e, units $\mathrm{kg} / \mathrm{m}^{2}$
Want (\bar{x}, \bar{y})

$$
\text { mass }=m=\int_{a}^{b} \underbrace{e}_{\tau_{\text {mass/area }}} \cdot \underbrace{f(x) d x}_{\text {area }}
$$

$$
\underset{\text { moment }}{\substack{\text { mont }}}=M_{y}=\int_{a}^{b} x \cdot \underbrace{b}_{\text {locetin mass }} x f(x) d x=e \int_{a}^{b} x f(x) d x
$$

$$
\underset{\text { about } x}{\text { moment }}=M_{x}=\int_{a}^{b} \frac{1}{2} \underbrace{f(x)}_{\text {location }} \underbrace{e f(x) d x}_{\text {muss }}=\frac{e}{2} \int_{a}^{b}\left(f(x)^{2} d x\right.
$$

6. Find the Center of Mass for the 2-dimensional regions below. Do you believe your answers?
(a) The region bounded by $y=\frac{1}{x} \quad, y=0 x=1$, and $x=5$. Assume $\rho=2.5$ important?

$$
\begin{array}{ll}
m=\int_{1}^{5} 2 \cdot \frac{1}{x} \cdot d x=\left.2 \ln (x)\right|_{1} ^{5}=2 \ln (5) & (\bar{x}, \bar{y})=\left(\frac{8}{2 \ln (5)}, \frac{\frac{4}{5}}{2 \ln (5)}\right) \\
M_{y}=2 \int_{1}^{5} x\left(\frac{1}{x}\right) d x=2 \int_{1}^{5} d x=8 & \approx(2.48,0.249) \\
M_{x}=2 \cdot \frac{1}{2} \int_{1}^{5}\left(\frac{1}{x}\right)^{2} d x=\int_{1}^{5} x^{-2} d x & \\
-\left.x^{-1}\right|_{1} ^{5}=-\frac{1}{5}+\frac{1}{1}=\frac{4}{5} &
\end{array}
$$

7. Center of Mass in Two Dimensions Again

8. Find the center of mass for the region bounded by $y=5-x^{2}, y=1$. Assume ρ is constant. Sketch the region and see if your answer seems plausible.

$$
M_{y}=e \int_{-2}^{2} x\left(5-x^{2}-1\right) d x
$$

$$
m=\int_{-2}^{2} e\left(5-x^{2}-1\right) d x=e \int_{-2}^{2}\left(4-x^{2}\right) d x
$$

$$
=2 e \int_{0}^{2}\left(4-x^{2}\right) d x=2 e\left(4 x-\left.\frac{1}{3} x^{3}\right|_{0} ^{2}=2 e\left(8-\frac{8}{3}\right)=\frac{32 e}{3}\right.
$$

$$
=e \int_{-2}^{\left(4 x-x^{3}\right)} d x=0
$$

$$
M_{x}=\frac{e}{2} \int_{-2}^{2}\left(\left(5-x^{2}\right)^{2}-\right.
$$

$\left.-(1)^{2}\right) d x=\frac{e}{2} \int_{-2}^{2}\left(24-10 x^{2}+x^{4}\right) d x$

$$
=e \int_{0}^{2}\left(24-10 x^{2}+x^{4} d x\right.
$$

$$
\begin{aligned}
& =e \int_{0}^{2}\left(24-10 x^{2}+x^{4} d x\right. \\
& =\left.e\left(24 x-\frac{10}{3} x^{3}+\frac{1}{5} x^{5}\right)\right|_{0} ^{2} \\
& =e\left(48-\frac{80}{3}+\frac{32}{5}\right)=e \frac{720-400+96}{15}=e \frac{416}{15}
\end{aligned}
$$

So $(\bar{x}, \bar{y})=\left(0, \frac{\frac{416 e}{15}}{\frac{32 e}{3}}\right)=\left(0, \frac{416}{15} \cdot \frac{3}{32}\right)$

$$
=\left(0, \frac{13}{5}\right)=(0,2.6)
$$

