1. Intro to Moments and Center of Mass in One Dimension with Point Masses
2. For the masses and locations below, (a) make a guess about the location of the center of mass, then (b) use the work from \#1 above to find it precisely.
$m_{1}=2$ at $x_{1}=0, m_{2}=4$ at $x_{2}=2$, and $m_{3}=10$ at $x_{3}=10$.
3. Intro to Moments and Center of Mass in One Dimension with Continuous Density
4. Compute the center of mass for a thin rod with density $\rho(x)=12 x^{2} \mathrm{~kg} / \mathrm{m}$ assuming one end of the rod is at $x=0 \mathrm{~m}$ and the other is at $x=2 \mathrm{~m}$.
5. Intro to Moments and Center of Mass in Two Dimensions
6. Find the center of mass for the region bounded by $y=1 / x, y=0, x=1$, and $x=5$. Assume $\rho=2$. Sketch the region and see if your answer seems plausible.
7. Center of Mass in Two Dimensions Again
8. Find the center of mass for the region bounded by $y=5-x^{2}, y=1$. Assume ρ is constant. Sketch the region and see if your answer seems plausible.
