1. List things you know about the function $f(x)=\ln (x)$.

$$
\begin{array}{rl}
f^{\prime}(x)=\frac{1}{x} & f(a b)=f(a)+f(b) \\
f^{-1}(x)=e^{x} & f\left(a^{r}\right)=r f(a)
\end{array}
$$

(b) If $0<x<1$, then $\ln (x)<0$.

If $0 \leq x<1$, then $\ln (x)=\int_{1}^{x} \frac{1}{t} d t=-\int_{x}^{1} \frac{1}{t} d t$ and $\int_{x}^{1} \frac{1}{t} d t$ is positive!
(c) The domain of $f(x)=\ln (x)$ is restricted to positive x-values.
$b / c \quad y=\frac{1}{t}$ is undefined at $t=0$. So $\ln (0)=\int_{0}^{1} \frac{1}{t} d t$ doesn't make sense.
(d) The graph of $f(x)=\ln (x)$ keeps growing but is grows at a slower and slower rate.

As $x \rightarrow \infty, \int_{1}^{x} \frac{1}{t} d t$ will keep gaining in area but less and less since $y=\frac{1}{t}$ is asymptotic to x-axis. (e) $\frac{d}{d x}(\ln (x))=\frac{1}{x}$.
F.T.C. part I : $\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)$.
4. Another way to discover logarithm rules.

Show $\ln \left(x^{r}\right)=r \ln (x)$.
Let $f(x)=\ln \left(x^{r}\right)$ and $g(x)=r \ln (x)$
Then $f^{\prime}(x)=\frac{r x^{r-1}}{x^{r}}=\frac{r}{x}=g^{\prime}(x)$.

$$
f(1)=0=g(1) \text {. }
$$

So $f(x)=g(x)$.
So $f(x)=g(x)+c$.

$y=\frac{1}{t}$ number and the function $g(x)=e^{x}$.
def: e is the number st. $\int_{1}^{e} \frac{1}{t} d t=1$ alt: e is the number st. $\ln (e)=1$ Observation: e^{x} "looks" like the inverse.

$$
\ln \left(e^{r}\right)=r \ln (e)=r \cdot 1=r
$$

6. Use this definition (and rules about logarithms) to confirm the rule $e^{p} e^{q}=e^{p+q}$.

$$
\begin{aligned}
\ln \left(e^{p} \cdot e^{q}\right) & =\ln \left(e^{p}\right)+\ln \left(e^{q}\right) \\
& =p \ln (e)+q \ln (e)=p+q \\
& =(p+q)(\ln e)=\ln \left(e^{p+q}\right)
\end{aligned}
$$

So $e^{p} e^{q}=e^{p+q}$

$$
\begin{aligned}
& y=a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)^{x}} \\
& y^{\prime}=\left(e^{x \ln (a)}\right) \cdot \ln (a)=a^{x} \cdot \ln (a)
\end{aligned}
$$

