SECTION 2.7: INTEGRALS, EXPONENTIAL FUNCTIONS AND LOGARITHMS

1. List things you know about the function f(z) = In(x).
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2. A new definition for the natural logarithm. X
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3. Explain/justify how the facts below follow immediately from this definition.
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(c) The domain of f(z) = In(x) is restricted to positive z-values.
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(d) The graph of f(z) = ( ) keeps growing but is grows at a slower and slower rate.
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4. Another way to discover logarithm rules.
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5. Another V1ew of the number e and the function g(x) = e*. g _— A 6__1
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6. Use this definition (and rules about logarithms) to confirm the rule ePe? = e *4.
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7. Use the fact that N = ") provided N > 0, to find the derivative of y = a® for a > 0.
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