

3. Explain/justify how the facts below follow immediately from this definition.

(a)
$$\ln(1) = 0$$
. $\ln(1) = \int_{1}^{1} \frac{1}{2} dt = 0$ (no area under $t=0$)

t=1 to t=x

(b) If
$$0 < x < 1$$
, then $\ln(x) < 0$.
If $0 \le x \le 1$, then $\ln(x) = \int_{1}^{x} \frac{1}{t} dt = -\int_{x}^{1} \frac{1}{t} dt$
and $\int_{x}^{1} \frac{1}{t} dt$ is positive!

(c) The domain of $f(x) = \ln(x)$ is restricted to positive *x*-values.

(d) The graph of f(x) = ln(x) keeps growing but is grows at a slower and slower rate.

As
$$x \to \infty$$
, $\int_{1}^{x} \frac{1}{t} dt$ will keep gaining in a ka
but less and less since $y = \frac{1}{t}$ is asymptotic to x-axis.
(e) $\frac{d}{dx} (\ln(x)) = \frac{1}{x}$.
F.T. C. part I : $\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$.

4. Another way to discover logarithm rules. Show $\ln(x') = r \ln(x)$. $ut f(x) = \ln(x')$ and $g(x) = r \ln(x)$ f(x) = 0 = g(x). $f(x) = \frac{rx'}{2} = \frac{r}{2} = q(x)$. $g(x) = r \ln(x)$ f(x) = 0 = g(x). Then $f'(x) = \frac{rx^{r-1}}{r} = \frac{r}{x} = g'(x)$. So f(x) = g(x) + C. def: e is the number s.t. $\int_{e}^{e} \frac{1}{e}$ 5. Another view of the number *e* and the function $g(x) = e^x$. 4= 主 alt: e is the number st. ln(e) = 1Observation: e^{X} "looks" like the inverse. $ln(e^{r}) = r ln(e) = r \cdot l = r$ デセ

6. Use this definition (and rules about logarithms) to confirm the rule $e^{p}e^{q} = e^{p+q}$.

$$ln(e^{P} \cdot e^{q}) = ln(e^{P}) + ln(e^{q})$$

= p ln(e) + q ln(e) = P+ 9
= (p+q)(lne) = ln(e^{p+q})
So e^{P} e^{q} = e^{p+q}

7. Use the fact that $N = e^{\ln(N)}$ provided N > 0, to find the derivative of $y = a^x$ for a > 0.

$$\begin{aligned} y &= a^{X} = e^{\ln(a^{X})} = e^{x\ln(a)} \\ y' &= \left(e^{x\ln(a)}\right) \cdot \ln(a) = a^{X} \cdot \ln(a) \end{aligned}$$