
SECTION 2.7: INTEGRALS, EXPONENTIAL FUNCTIONS AND LOGARITHMS

1. List things you know about the function f(x) = ln(x).

2. A new definition for the natural logarithm.

3. Explain/justify how the facts below follow immediately from this definition.

(a) ln(1) = 0.

(b) If 0 < x < 1, then ln(x) < 0.

(c) The domain of f(x) = ln(x) is restricted to positive x-values.

(d) The graph of f(x) = ln(x) keeps growing but is grows at a slower and slower rate.

(e) d
dx (ln(x)) =

1
x .
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4. Another way to discover logarithm rules.

5. Another view of the number e and the function g(x) = ex.

6. Use this definition (and rules about logarithms) to confirm the rule epeq = ep+q.

7. Use the fact that N = eln(N) provided N > 0, to find the derivative of y = ax for a > 0.
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