1. List things you know about the function $f(x)=\ln (x)$.
2. A new definition for the natural logarithm.
3. Explain/justify how the facts below follow immediately from this definition.
(a) $\ln (1)=0$.
(b) If $0<x<1$, then $\ln (x)<0$.
(c) The domain of $f(x)=\ln (x)$ is restricted to positive x-values.
(d) The graph of $f(x)=\ln (x)$ keeps growing but is grows at a slower and slower rate.
(e) $\frac{d}{d x}(\ln (x))=\frac{1}{x}$.
4. Another way to discover logarithm rules.
5. Another view of the number e and the function $g(x)=e^{x}$.
6. Use this definition (and rules about logarithms) to confirm the rule $e^{p} e^{q}=e^{p+q}$.
7. Use the fact that $N=e^{\ln (N)}$ provided $N>0$, to find the derivative of $y=a^{x}$ for $a>0$.
