1. Things to Know by the end of this section:
(a) what a sequence is
(b) how to read and use sequence notation
(c) what it means to "Find a formula for the nth term" and how to find it
(d) what it means for a sequence to converge or diverge
(e) how to use the many different techniques for determining if a sequence converges or diverges
(f) what n ! means
(g) what the following terms mean when referencing a sequence: bounded, monotone, increasing, decreasing
2. A sequence is an ordered list of numbers. picture $\left\{a_{n}\right\}$ $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ the $n^{\text {th }}$ term τ second term
or $\left\{a_{n}\right\}_{n=1}^{\infty}$

3. For each sequence below, write the first 5 terms and graph them.
(a) $\left\{\frac{n+2}{2 n}\right\}_{n=1}^{\infty}$

n	1	2	3	4	5
a_{n}	$\frac{1+2}{2 \cdot 1}=\frac{3}{2}$	$\frac{4}{4}=1$	$\frac{5}{6}$	$\frac{6}{8}$	$\frac{7}{10}$

(b) $a_{n}=3\left(\frac{-1}{2}\right)^{n-1}$ for $n \geq 1$

n	1	2	3	4	5
a_{n}	$3\left(\frac{-1}{2}\right)^{0}=3$	$3\left(\frac{-1}{2}\right)=\frac{-3}{2}$	$\frac{3}{4}$	$\frac{-3}{8}$	$\frac{3}{16}$

$$
3,-\frac{3}{2}, \frac{3}{4}, \frac{-3}{8}, \frac{3}{16}, \ldots
$$

(c) $a_{1}=5$ and $a_{n}=2 \cdot a_{n-1}+1$

n	1	2	4	5	
a_{n}	5	$2 \cdot a_{1}+1$	$2 \cdot a_{2}+1$	$2 \cdot a_{3}+1$	95
	$=2 \cdot 5+1=11$	$=2 \cdot 11+1=23$	$=2 \cdot 23+1$		
	$=47$				

4. Find a formula for 3c.

Strategy: explore. look for patterns.

$$
\begin{aligned}
a_{1} & =5 \\
a_{2} & =2 \cdot 5+1 \\
a_{3} & =2(2 \cdot 5+1)+1 \\
& =2^{2} \cdot 5+2+1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
a_{4} & =2\left(2^{2} \cdot 5+2+1\right)+1 \\
& =2^{3} \cdot 5+2^{2}+2+1 \\
a_{5} & =2\left(2^{3} \cdot 5+2^{2}+2+1\right) \\
& =2^{4} \cdot 5+2^{3}+2^{2}+2+1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =2^{n-1} \cdot 5+2^{n-2}+2^{n-3}+\ldots+2^{2}+2+1 \\
& =2^{n-1} \cdot 5+\sum_{k=0}^{n-2} 2^{k}
\end{aligned}
$$

Well have nice ways of dealing withsthtis

$$
\frac{3}{2}, 1, \frac{5}{6}, \frac{6}{8}, \frac{7}{10}, \ldots
$$

monotone decreasing bounded

$$
3,-\frac{3}{2}, \frac{3}{4}, \frac{-3}{8}, \frac{3}{16}, \ldots
$$

not monotone bounded

$$
5,11,23,47,95, \ldots
$$

monotone increasing not bounded

5. Definition: The symbol $n!$ (or "n factorial") means $1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n$

So $1!=1$

$$
\begin{aligned}
& 2!=1 \cdot 2=2 \\
& 3!=1 \cdot 2 \cdot 3=6 \\
& 4!=1 \cdot 2 \cdot 3 \cdot 4=3!\cdot 4=24
\end{aligned}
$$

6. Find a formula for the sequence $a_{1}=1$ and $a_{n}=3 \cdot a_{n-1} / n$

$$
\begin{aligned}
1 & =a_{1}=1=\frac{3^{1-1}}{1!} \\
\frac{3}{2} & =a_{2}=\frac{3 \cdot 1}{2}=\frac{3^{2-1}}{2!} \\
\frac{3}{2}=9 / 6 & =a_{3}=3\left(\frac{3}{2}\right) \cdot \frac{1}{3}=\frac{3^{2}}{2 \cdot 3}=\frac{3^{3-2}}{3!} \\
\frac{9}{8} & =a_{4}
\end{aligned}
$$

7. sequences and convergence

- $\left\{a_{n}\right\}$ a sequence, we say $\lim _{n \rightarrow \infty} a_{n}=L$ if the terms of the sequence gets closer and closer to L as we go further out on sequence. In this case, we say $\left\{a_{n}\right\}$ converges to L, or $\left\{a_{n}\right\}$ is convergent
- If $\lim _{n \rightarrow \infty} a_{n}$ does not exist, we say $\left\{a_{n}\right\}$ is divergent
- Return to pictures for $3 a b c$. Do you think these converge or diverge?
- How much do the first two terms matter when guessing whether these sequence converge? The first 10 terms? 100 terms?
- discrete vs. continuous functions
- Observation: Given sequence $\left\{a_{n}\right\}$, if we can find $f(x)$ such that $f(n)=a_{n}$ for all $n=1,2,3,4, \ldots$, then we can our Calk I techniques to find limits by:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)
$$

8. Find the limit of each of the following sequences or show that it diverges.
(a) $\left\{\pi+\frac{100}{n}\right\}$
converges

$$
\lim _{n \rightarrow \infty}\left(\pi+\frac{100}{n}\right)=\pi
$$

\varlimsup_{0} by number sense

$$
\begin{aligned}
& \text { (b) }\left\{\frac{100 n^{2}+\sqrt{n}}{n-3 n^{2}}\right\} \\
& \lim _{n \rightarrow \infty} \frac{100 n^{2}+\sqrt{n}}{n-3 n^{2}} \cdot \frac{1}{n^{2}} \\
& \frac{1}{n^{2}}
\end{aligned} \lim _{n \rightarrow \infty} \frac{100+\frac{1}{n^{3 / 2}}}{\frac{1}{n}-3}=\frac{-100}{3}
$$

Converges

$$
\lim _{n \rightarrow \infty} \frac{e^{n}}{n^{2}} \stackrel{(11)}{=} \lim _{n \rightarrow \infty} \frac{e^{n}}{2 n} \stackrel{(4)}{=} \lim _{n \rightarrow \infty} \frac{e^{n}}{2}=\infty \quad \text { diverges. }
$$

$$
\begin{aligned}
\text { (d) }\left\{\left(1+\frac{1}{n}\right)^{n}\right\} \quad \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e^{\prime} & =e \\
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+n^{-1}\right)}{n^{-1}} & =\lim _{n \rightarrow \infty} \frac{\frac{-n^{-2}}{1+n^{-1}}}{-n^{-2}} \\
\imath_{\infty}^{\infty} & =\lim _{n \rightarrow \infty} \frac{1}{1+n^{-1}}=1
\end{aligned}
$$

9. Definitions: The sequence $\left\{a_{n}\right\}$ is:
(a) bounded if there are numbers M_{1} and M_{2} sothat

$$
M_{1} \leq a_{n} \leq M_{2} \text { for all } n=1,2,3, \ldots
$$

(b) increasing for $n \geqslant n_{0}$ if $a_{n} \leq a_{n+1}$ for all integer $n \geqslant n_{0}$

(c) decreasing for $n \geq n_{0}$ if $a_{n} \geqslant a_{n+1}$ for all integers $n \geqslant n_{0}$

(d) monotone for $n \geqslant n_{0}$ if $\left\{a_{n}\right\}$ is either an increasing or a decreasing sequence for $n \geqslant n o$
10. Monotone Convergence Theorem

If $\left\{a_{n}\right\}$ is bounded and there is some n_{0} such that $\left\{a_{n}\right\}$ is monotone for all $n \geqslant n_{0}$, then $\left\{a_{n}\right\}$ converges.
11. Are the sequences below bounded? Monotone?
(a) $a_{n}=\frac{(-1)^{n-1}}{3^{n}}$ for $n \geq 1$
-bounded? Yes. $-\frac{1}{3} \leq a_{n} \leq \frac{1}{3}$

$$
\begin{aligned}
& a_{1}=\frac{1}{3} \\
& a_{2}=-\frac{1}{9} \\
& a_{3}=\frac{1}{27}
\end{aligned}
$$

- monotone? No. It bounces back\& forth between positive and negative values.
(b) $a_{n}=\frac{3^{n}}{n!}$ for $n \geq 1$

$$
a_{1}=3
$$

$$
a_{2}=\frac{9}{2}
$$

$$
\begin{aligned}
& \text { think } \frac{3}{n}_{n!}^{n} \text { for } n \geq 1 \\
& \text { about } a_{n}
\end{aligned} a_{n}=\frac{3^{n}}{n!}=\left(\frac{3}{1} \cdot \frac{3}{2} \cdot \frac{3}{3} \cdot\left(\frac{3}{4} \cdot \ldots \cdot \frac{3}{n-1} \cdot \frac{3}{n}\right)\right.
$$

$$
\stackrel{\tau}{c}^{t} \quad \text { all }<1
$$

$$
a_{3}=\frac{27}{6}=\frac{9}{2}
$$

$$
a_{4}=\frac{81}{24}=\frac{27}{8}
$$

So, for $n \geqslant 3 \quad a_{n+1}=a_{n} \cdot \frac{3}{n+1}<a_{n}$ because $\frac{3}{n+1}<1$. So $a_{n+1}<a_{n}$. So the sequence

$$
a_{5}=\frac{243}{5!}=\frac{27}{40}
$$ is decreasing for $n \geqslant 3$. Bounded? Yes. $0 \leq a_{n} \leq 3$.

