SECTION 5.1: SEQUENCES

1. Things to Know by the end of this section:
(a) what an infinite sequence is
(b) how to read and use sequence notation
(c) what it means to "Find a formula for the nth term" and how to find it
(d) what it means for a sequence to converge or diverge
(e) how to use the many different techniques for determining if a sequence converges or diverges
(f) what n ! means
(g) what the following terms mean when referencing a sequence: bounded, monotone, increasing, decreasing
2. An infinite sequence is
3. For each sequence below, write the first 5 terms and graph them.
(a) $\left\{\frac{n+2}{2 n}\right\}_{n=1}^{\infty}$
(b) $a_{n}=3\left(\frac{-1}{2}\right)^{n-1}$ for $n \geq 1$
(c) $a_{1}=5$ and $a_{n}=2 \cdot a_{n-1}+1$
4. Find a formula for 3c.
5. Definition: The symbol n ! (or " n factorial") means
6. Find a formula for the sequence $a_{1}=1$ and $a_{n}=3 \cdot a_{n-1} / n$
7. sequences and convergence
8. Find the limit of each of the following sequences or show that it diverges.
(a) $\left\{\pi+\frac{100}{n}\right\}$
(b) $\left\{\frac{100 n^{2}+\sqrt{n}}{n-3 n^{2}}\right\}$
(c) $\left\{\frac{n^{2}}{10^{n}}\right\}$
(d) $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$

Now, go back to the examples 3abc. Find the limit of each or show that it diverges.
9. Definitions: The sequence $\left\{a_{n}\right\}$ is:
(a) bounded if
(b) increasing
(c) decreasing
(d) monotone
10. Monotone Convergence Theorem
11. Are the sequences below bounded? Monotone?
(a) $a_{n}=\frac{(-1)^{n-1}}{3^{n}}$ for $n \geq 1$
(b) $a_{n}=\frac{3^{n}}{n!}$ for $n \geq 1$

