Things to Know by the end of this section:
a. how to use sigma notation with facility.
b. what is meant by a series, especially as compared to a sequence (from §5.1).
c. what is meant by a sequence of partial sums of a series and how to find it.
e. what a geometric series is and how to determine whether or not it converges.
f. what a telescoping series is and how to determine whether or not it converges.
g. develop facility with the terminology of this section including all the terms above and things like: the terms of the series, the k th term in the series and the k th partial sum of the series.
d. what it means to say a series converges. infinite

1. An ${ }^{2}$ inferiesites is a sum of infinitely many terms.
$\infty \quad a_{2}$ is a term in the series
$\underbrace{\sum_{n}}_{\text {2. The sequence of partial sums of a series is }\left\{S_{n}\right\}_{n=1}^{\infty} a_{n} \text { series } a_{n} \text { where } a_{n} \text { is the } a_{2}+\ldots+a_{n}+\ldots}$

$$
\begin{array}{ll}
S_{1}=a_{1} & S_{4}=a_{1}+a_{2}+a_{3}+a_{4} \\
S_{2}=a_{1}+a_{2} & \vdots \\
S_{3}=a_{1}+a_{2}+a_{3} & S_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{k}=\sum_{n=1}^{k} a_{k}
\end{array}
$$

See the difference between the series and the $k^{\text {th }}$ partial sum?
3. For each series below, expand the sigma notation and then write the first 5 terms in its sequence of partial sums, $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$. (Use a calculating device to get a decimal or fraction representation of the partial sums.)

$$
\begin{gathered}
\text { (c) } \sum_{n=1}^{\infty} \frac{(-1)^{n}}{5}=\frac{-1}{5}+\frac{1}{5}-\frac{1}{5}+\frac{1}{5}-\frac{1}{5}+\cdots \\
S_{1}=\frac{-1}{5} \quad\left\{S_{n}\right\}=\frac{-1}{5}, 0,-\frac{1}{5}, 0, \frac{-1}{5}, 0, \ldots \\
S_{2}=0
\end{gathered}
$$

$$
S_{3}=-\frac{1}{5}
$$

$$
S_{4}=0
$$

lime S_{n} Does not exist

$$
s_{5}=-\frac{1}{5}
$$

$n \rightarrow \infty$
ble it bounces back and forth between $-1 / 5$ and 0 .

$$
\begin{aligned}
& \text { (d) } \sum_{n=1}^{\infty} \frac{n}{n^{2}+2}=\frac{1}{3}+\frac{2}{4+2}+\frac{3}{9+2}+\frac{4}{16+2}+\frac{5}{25+2}+\cdots=\frac{1}{3}+\frac{2}{6}+\frac{3}{11}+\frac{4}{18}+\frac{5}{27}+\cdots \\
& S_{1}=\frac{1}{3}=0 . \overline{3} \\
& S_{2}=\frac{1}{3}+\frac{2}{6}=\frac{2}{3}=0 . \overline{6} \quad\left\{S_{n}\right\}=\frac{1}{3}, \frac{2}{3}, 0 . \overline{93}, 1 . \overline{16}, 1.3468 \ldots, \cdots \\
& S_{3}=\frac{1}{3}+\frac{2}{6}+\frac{3}{11}=0 . \overline{93} \\
& S_{4}=\frac{1}{3}+\frac{2}{6}+\frac{3}{11}+\frac{4}{18}=1 . \overline{16} \\
& S_{5}=\frac{1}{3}+\frac{2}{6}+\frac{3}{11}+\frac{4}{18}+\frac{5}{25}=1.3468 \ldots \\
& S_{6}=1.5046 \ldots \\
& S_{7}=1.6419 \ldots \\
& \text { 4. Definition: Given the series } \sum_{n=1}^{\infty} a_{n}, \text { its sequence of partial sums is } \quad\left\{S_{n}\right\}_{n=1}^{\infty}
\end{aligned}
$$

$\begin{aligned} \text { 4. Definition: Given the series } & \sum_{n=1}^{\infty} a_{n}, \text { its sequence of partial sums is } \\ \text { - The series converges if } & \left.S_{n} \text { converges. }\left(\lim _{n \rightarrow \infty}\right\}_{n}\right\}_{n=1}^{\infty}\end{aligned}$

- The series diverges if S_{n} diverges. ($\lim _{n \rightarrow \infty} S_{n}$ does not exist.)

5. Revisit the series in \# 3 and determine (if possible!) whether the series converges or diverges. Show your work!
