Things to know by the end of this section
a. how to use sigma notation with facility
d. what it means to say a series converges.
b. the meaning of a series, especially as compared to a sequence (from §5.1)
c. the meaning of $a$ sequence of partial sums of a series and how to find it.
e. what a geometric series is and how to determine whether or not it converges.
f. what a telescoping series is and how to determine whether or not it converges.

1. An infinite series is
2. The sequence of partial sums of a series is
3. For each series below, expand the sigma notation and then write the first 5 terms in its sequence of partial sums, $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$. (Use a calculating device to get a decimal or fraction representation of the partial sums.)
(a) $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5}$
(d) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+2}$
4. Definition: Given the series ,its sequence of partial sums is

- The series converges if
- The series diverges if

5. Revisit the series in \# 3 and determine (if possible!) whether the series converges or diverges. Show your work!
