SECTION 5.5: ALTERNATING SERIES (DAY 2)

(1) The Alternating Series Test

Given
$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n$$
 or $\sum_{n=1}^{\infty} (-1)^n b_n$, the series converges if:

(i)
$$0 \le b_{n+1} \le b_n$$
 and (ii) $\lim_{n \to \infty} b_n = 0$ for $n \ge 1$

(2) Determine whether the alternating series below converge or diverge. Justify your conclusion.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$

 $b_n = \frac{1}{n^2}$; (i) $0 < \frac{1}{(n+1)^2} < \frac{1}{n^2}$. So b_n decreases.

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{3n+1}$$
 $b_n = \frac{n}{3n+1}$

So $\lim_{n \to \infty} \frac{(-1)^{n-1}}{3n+1}$ does not exist.

Note that $\lim_{n \to \infty} \frac{n}{3n+1} = \frac{1}{3} \neq 0$.

So the Series diverges by divergences test.

$$b_{n} = \frac{n}{2^{n}} ; \quad c_{n+1} \leq \frac{n}{2^{n+1}} \leq \frac{n}$$

(i)
$$\lim_{n \to \infty} \frac{n}{2^n} = 0$$
. So the series converges by AST.

- (3) Remainders in Alternating Series and How to Estimate Them Assume $S = \sum_{i=1}^{N+1} b_{i}$ is a convergent alt. series and S_{N} is the Nth partial sum. Then the remainder, RN, is: RN = S-SN. · | RN / 6 bN+1.
- (4) Recall that we concluded the series $\sum_{i=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges. Find S_4 and determine how well it estimates the sum of the series. How large does k need to be so that S_k is within $0.0001 = 10^{-4}$ of the sum of the series?
- · Sy=1-4+ - 1 = 0.821

· Want |R1 | < 10-4

• $|R_4| \leq b_6 = \frac{1}{24} = 0.027$

 $So \frac{1}{N^2} < \frac{1}{10,000} or$ $N^2 > 10,000$. So N > 100.

- (5) **Definitions:** Absolute and Conditional Convergence
- . If Zlanl converges, we say Zan is absolutely convergent.
- · If Zan converges but Zknldiverges, we say Zan is conditionally convergent

 Brandard Example of cond. conv series: $\sum(-1)\frac{1}{n}$

 - (6) For each series below, determine if the series is absolutely convergent, conditionally convergent, or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n^2}$$
 absolutely convergent

$$\sum_{n=1}^{\infty} \frac{|c_1|^{n-1}}{3n^2} = \sum_{n=1}^{\infty} \frac{1}{3n^2} = \frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ a multiple of a convergent } p\text{-series.}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n+1}$$
 Conditionally convergent converges. by AST

Use $b_n = \frac{1}{3n+1}$, decreasing. $\lim_{n \to \infty} \frac{1}{3n+1} = 0$

• $\Sigma |a_n| = \sum_{n=1}^{\infty} \frac{1}{3n+1}$ diverges by limit comparison test to $\Sigma \frac{1}{n}$.

Show $\sum_{n=1}^{\infty} \frac{1}{3n+1}$ diverges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n}$. $\lim_{n\to\infty} \frac{\frac{1}{3n+1}}{\frac{1}{n}} = \lim_{n\to\infty} \frac{n}{3n+1} = \frac{1}{3}$ Thus, since $\sum_{n\to\infty} \frac{1}{n}$ diverges, $\sum_{n\to\infty} \frac{1}{3n+1}$ diverges.