Section 5.5: Alternating Series (DAy 2)

(1) The Alternating Series Test
(2) Determine whether the alternating series below converge or diverge. Justify your conclusion.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{3 n+1}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{2^{n}}$
(3) Remainders in Alternating Series and How to Estimate Them
(4) Recall that we concluded the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ converges. Find S_{4} and determine how well it estimates the sum of the series. How large does k need to be so that S_{k} is within $0.0001=10^{-4}$ of the sum of the series?
(5) Definitions: Absolute and Conditional Convergence
(6) For each series below, determine if the series is absolutely convergent, conditionally convergent, or divergent.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3 n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3 n+1}$

