

(4) The Ratio Test Given
$$\sum_{n=1}^{\infty} a_n$$
 so that $a_n \neq 0$
(1) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely
(1) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges
(3) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the test is inconclusive.

(5) Use the Ratio Test to determine if the series below converge or diverge, or explain why the test fails.

(a)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n!}$$

lim $A_{n} = \lim_{n \to \infty} \frac{(-2)^{n+1}}{(n+n)!} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} = \lim_{n \to \infty} \frac{2}{n+1} = 0$
So
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n!}$$
 converges absolutely.
(b)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!} = \lim_{n \to \infty} \left(\frac{(n+1)!}{(n+1)!}\right| = \lim_{n \to \infty} \frac{(n+1)!}{(n+1)!} \cdot \frac{n!}{n!} = \lim_{n \to \infty} \frac{(n+1)(n+1)!}{(n+1)!} \cdot \frac{n!}{n!} = \lim_{n \to \infty} \frac{(n+1)(n+1)!}{(n+1)!} \cdot \frac{n}{n!}$$

=
$$\lim_{n \to \infty} \left(\frac{n+1}{n}\right)^n = \lim_{n \to \infty} \left(\frac{1+1}{n}\right)^n = e > 1.$$

So
$$\sum_{n=1}^{\infty} \frac{n^n}{n!} \text{ diverges.}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2}{3n+10}$$

lim
$$\left(\frac{2}{3n+10}\right) = \lim_{n \to \infty} \frac{3n+10}{3n+15} = 1.$$
 No infb.