
SECTION 5.6: RATIO AND ROOT TESTS

(1) (Review) Explain what it means for
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(a) absolutely convergent

(b) conditionally convergent

(2) Show that the series
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n5
is convergent by showing that it is absolutely convergent.

(3) Show that the series
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(�1)np
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is conditionally convergent.
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(4) The Ratio Test

(5) Use the Ratio Test to determine if the series below converge or diverge, or explain why the test

fails.
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