(1) A power series centered at $x=0$ has the form:

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots
$$

$\xrightarrow{\text { example }}$
(2) A power series centered at $x=a$ has the form:

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

(3) Convergence of a Power Series.

The: Any power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ will fall into 1 of 3 types:
(i) Series converges only for $x=a$ and diverges for all $x \neq a$
(ii) Series converges for all x-values

(iii) there is some number R (radius of convergence) where series converges if $|x-a|<R$,
series cliverges if $|x-a|>R$, and may converge ordiverge when $|x-a|=R$.
Always intervals.

So, called intervals of convergence
(4) Go back to the series the Section 5.6 worksheet, $\sum_{k=1}^{\infty} \frac{x^{k}}{k^{4}}$ and determine the radius and interval of convergence.
$\underset{\text { convergence }}{\text { radius of }}: R=1$
Interval of: $[-1,1]$
convergence 1

$$
\cdots \longrightarrow \text { Examples }
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+1) x^{n}=1+2 x_{n=0}+3 x^{2}+4 x^{3}+5 x^{4}+\cdots \\
& \sum_{n=0}^{\infty}(-2)^{n}(x-5)^{n}=1-2(x-5)+4(x-5)^{2}-8(x-5)^{3}+\ldots
\end{aligned}
$$

