Section 6.1: Power Series (Day 2)
(1) State the center of each power series below and find its radius of convergence, R and interval of convergence. Use ratio test
(a) $\sum_{k=1}^{\infty} \frac{(x-2)^{n}}{\sqrt[3]{n}}$

$$
\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{\sqrt[3]{n+1}} \cdot \frac{\sqrt[3]{n}}{(x-2)^{n}}\right|=\lim _{n \rightarrow \infty}|x-2| \sqrt[3]{\frac{n}{n+1}}=|x-2| .
$$

want $|x-2|<1,<R=1$
Check $x=3$: $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{n}}$, divergent p-aries
So $-1<x-2<1$ or $1<x<3$
Fleck $x=1: \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{n}}$. ASS, $b_{n}=\frac{1}{n^{1 / 3}}$

$$
b_{n+1}=\frac{1}{\sqrt[3 n+1]{3}}<\frac{1}{\sqrt[3]{n}}=b_{n}, \lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n}}=0 \text {. So }
$$

Series converges.
Series converges.
Answer $\quad R=1, I .0 C:[1,3)$

$$
\begin{aligned}
&=\sum\left(\frac{2}{5}\right) x \\
& \left.\lim _{n \rightarrow \infty}\left|\frac{(2 / 5)^{n+1} x^{n+1}}{(2 / 5)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}|x| \cdot \frac{2}{5}=\frac{2}{5} x \right\rvert\,
\end{aligned}
$$

we want $\frac{2}{5}|x|<1$ or $|x|<\frac{5}{2}$ or $\frac{-5}{2}<x<\frac{5}{2}$.
$\tau_{R}=5 / 2$
Check: $x=5 / 2 \quad \sum\left(\frac{2}{5}\right)^{n}\left(\frac{5}{2}\right)^{n}=\sum 1$ diverges.
check: $x=-5 / 2 \quad \sum\left(\frac{2}{5}\right)^{n}\left(\frac{-5}{2}\right)^{n}=\sum(-1)^{n}$ divers.
Answer: $R=\frac{5}{2}$; I.O.C. $\left(-\frac{5}{2}, \frac{5}{2}\right)$
(c) $\sum_{k=1}^{\infty} \frac{(x-1)^{n}}{n!} \quad \lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{(n+1)!} \cdot \frac{n!}{(x-1)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|}{n+1}=0 . \underbrace{\text { always }}<1$.

Conclusion $R=\infty$, I.O.C is $(-\infty, \infty)$
(2) If you view the power series below as a geometric series what can you immediate conclude about (i) its radius and interval of converges and (ii) its sum (where it converges).

$$
\sum_{k=\mathbf{0}}^{\infty} x^{n}
$$

From geometric series, we know $\sum_{k=0}^{\infty} x^{n}$ converses if $|x|<1$ and diners if $|x| \geqslant 1$.
if convergent, then

(3) Use the formula above to write each function below as a power series. Determine its radius and interval of convergence.

$$
\begin{aligned}
& \text { (a) } f(x)=\frac{1}{1-9 x^{2}}
\end{aligned}=\sum_{K=0}^{\infty}\left(9 x^{2}\right)^{n}=\sum_{k=0}^{\infty} q^{n} x^{2 n}
$$

ratio test:

$$
: \lim _{n \rightarrow \infty}\left|\frac{q^{n+1} x^{2 n+2}}{9^{n} x^{2 n}}\right|=\lim _{n \rightarrow \infty} 9 x^{2}=9 x^{2}<1 \text { s. } x^{2}<\frac{1}{9}
$$

$-\frac{1}{3}<x<\frac{1}{3}$. Check $x=\frac{1}{3}, \sum 1$ divergent. Check $x=-\frac{1}{3}, \sum(-1)^{n}$ diverse

$$
R=\frac{1}{3} \text {, I.O.C is }\left(-\frac{1}{3}, \frac{1}{3}\right)
$$

(b) $f(x)=\frac{x}{1+x}$

$$
=x\left(\frac{1}{1-(-x)}\right)=x \cdot \sum_{n=0}^{\infty}(-x)^{n}=x \sum_{n=0}^{\infty}(-1)^{n} x^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n+1}
$$

ratio tot: $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+2}}{(-1)^{n} x^{n+1}}\right|=\lim _{n \rightarrow \infty}|x|=|x|<1 \quad R=1,-k x<1$
$x=1: \sum(-1)^{n}$ divers \quad I.o.C. $(-1,1)$
$x=-1: \sum 1^{n}$ diners

