(1) Principle: Provided the x-values of the power series are in the interval of convergence, then we can operate term-by-term including addition, multiplication, differentiation, and integration.
(2) Use partial fractions to find a power series representation of $f(x)=\frac{1}{(x-1)(x-3)}$

$$
f(x)=\frac{1}{(x-1)(x-3)}=\frac{-1 / 2}{x-1}+\frac{1 / 2}{x-3}=\frac{1}{2} \cdot \frac{1}{1-x}-\frac{1}{2} \frac{1}{3-x}
$$

partial fractions

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{1}{1-x}-\frac{1}{6} \cdot \frac{1}{1-\frac{x}{3}}=\frac{1}{2} \sum_{n=0}^{\infty} x^{n}-\frac{1}{6} \sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n} \\
& =\sum_{n=0}^{\infty}\left[\frac{1}{2} x^{n}-\frac{1}{6}\left(\frac{x}{3}\right)^{n}\right]=\sum_{n=0}^{\infty}\left(\frac{1}{2}-\frac{1}{6}\left(\frac{1}{3}\right)^{n}\right) x^{n}
\end{aligned}
$$

$$
\ell
$$

I. OC $(-1,1)$

$$
\text { I.O.C. }(-3,3)
$$

- pick smallest
I. oC. $\quad(-1,1)$ interval.
(3) Given $f(x)=\sum_{n=1}^{\infty} x^{n}$ and $g(x)=\sum_{n=1}^{\infty} \frac{1}{n} x^{n}$, find the power series representation of $f(x) \cdot g(x)$.

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} x^{n}=x+x^{2}+x^{3}+x^{4}+\cdots \\
& g(x)=\sum_{n=1}^{\infty} \frac{1}{n} x^{n}=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\ldots \\
& f(x) \cdot g(x)=\left(x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots\right)\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{5} x^{5}+\cdots\right) \\
& =x^{2}+\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{1}{4} x^{5}+\frac{1}{5} x^{6}+\cdots+x^{3}+\frac{1}{2} x^{4}+\frac{1}{3} x^{5}+\frac{1}{4} x^{6}+\frac{1}{5} x^{7}+\cdots \\
& +x^{4}+\frac{1}{2} x^{5}+\frac{1}{3} x^{6}+\frac{1}{4} x^{7}+\frac{1}{5} x^{8}+\cdots \\
& +x^{5}+\frac{1}{2} x^{6}+\frac{1}{3} x^{7}+\cdots \\
& =x^{2}+\left(1+\frac{1}{2}\right) x^{3}+\left(1+\frac{1}{2}+\frac{1}{3}\right) x^{4}+\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) x^{5}+\cdots \\
& \hline
\end{aligned}
$$

collect
terms

$$
=\sum_{n=2}^{\infty}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1}\right) x^{n}
$$

(4) Differentiate the given series expansion of f term-by-term to obtain a series expansion for the derivative of f.

$$
\begin{aligned}
& \text { derivative of } f . \\
& f(x)=\frac{2}{2-x}=\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n} \text { F.Y.I. } \frac{2}{2-x} \frac{\frac{1}{2}}{\frac{1}{2}}=\frac{1}{1-\frac{x}{2}} \quad \begin{array}{c}
\text { and I.O.C is } \\
(-2,2) .
\end{array}
\end{aligned}
$$

(differentiate

$$
\begin{aligned}
& f^{\prime}(x)=2(-1)(2-x)^{-2}(-1)=\frac{2}{(2-x)^{2}} \text { < left-hand side } \\
& =\sum_{n=1}^{\infty} n\left(\frac{x}{2}\right)^{n-1} \cdot\left(\frac{1}{2}\right)=\sum_{n=1}^{\infty} \frac{n}{2^{n}} x^{n-1} \text { <right-hand }
\end{aligned}
$$

Now we have a power series expansion for a new function:

$$
g(x)=\frac{2}{(2-x)^{2}}=\sum_{n=1}^{\infty} \frac{n}{2^{n}} x^{n-1}<\begin{aligned}
& \text { I.O.C } \\
& (-2,2)
\end{aligned}
$$

So $g(1)$ is defined

(5) Use your answer to the previous problem to determine the sum of the convergent series $\sum_{n=1}^{\infty} \frac{n}{2^{2}}$.

So $\sum_{n=1}^{\infty} \frac{n}{2^{n}}=g(1)=\frac{2}{(2-1)^{2}}=2$.
(6) Find a power series representation of $f(x)=\frac{1}{1+x^{2}}$ and integrate the series expansion term-by-term to obtain a series expansion for the indefinite integral of f.

$$
f(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

Integrate both sides:

$$
\begin{aligned}
\text { Integrate both sides: } \\
\begin{aligned}
\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t & =\arctan (t)]_{0}^{x} \\
& =\arctan (x)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { R.h.S. } \\
& \int_{0}^{x}\left(\sum_{n=0}^{\infty}(-1)^{n} t^{2 n} d t\right)=\int_{0}^{x}\left(1-t^{2}+t^{4}-t^{6}+\cdots\right) d t \\
& \left.=\sum_{n=0}^{\infty}\left(\int_{0}^{x}(-1)^{n} t^{2 n} d t\right)=\sum_{n=0}^{\infty}\left((-1)^{n} \cdot \frac{t^{2 n+1}}{2 n+1}\right]_{0}^{x}\right) \\
& \left.=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}\right]_{j}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \quad \text { I.O.C (-1, 1) } \\
& \text { So } \arctan (x)=\sum_{n=0}^{\infty}
\end{aligned}
$$

