Section 6.2: Properties of Power Series

(1) Principle: Provided the x-values of the power series are in the interval of convergence, then
(2) Use partial fractions to find a power series representation of $f(x)=\frac{1}{(x-1)(x-3)}$
(3) Given $f(x)=\sum_{n=1}^{\infty} x^{n}$ and $g(x)=\sum_{n=1}^{\infty} \frac{1}{n} x^{n}$, find the power series representation of $f(x) \cdot g(x)$.
(4) Differentiate the given series expansion of f term-by-term to obtain a series expansion for the derivative of f.
$f(x)=\frac{2}{2-x}=\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}$
(5) Use your answer to the previous problem to determine the sum of the convergent series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.
(6) Find a power series representation of $f(x)=\frac{1}{1+x^{2}}$ and integrate the series expansion term-by-term to obtain a series expansion for $\arctan (x)$.

