Section 6.3: Remainders, Section 6.4: Intro
(1) Review from Friday (You should do this from memory OR from your notes from Friday.) (a) If $f(x)$ has derivatives of all orders at $x=a$, then the Taylor series for $f(x)$ at $x=a$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
$$

$$
\begin{aligned}
& \text { (b) Write the Taylor series for } y=\ln (x) \text { at } x=1 \text { and plug } x=2 \text { into that formula. } \\
& \ln (x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n} ; \quad \ln (2)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(1)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}- \\
& \text { the alternating harmonic series }-
\end{aligned}
$$

the alternating harmonic series \qquad
(c) Write the Taylor series for $f(x)=\cos (x)$ at $a=\pi / 2$ and write $p_{1}(x)$ and $p_{3}(x)$, the first and

$$
\text { - } \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x-\frac{\pi}{2}\right)^{2 n+1} \quad \text { • } P_{1}(x)=x-\frac{\pi}{2} \quad, P_{3}(x)=\left(x-\frac{\pi}{2}\right)-\frac{\left(x-\frac{\pi}{2}\right)^{3}}{3!}
$$

(2) Using the definition, find the Taylor series for $g(x)=e^{x}$ centered at $a=0$.

$$
\begin{aligned}
& g(x)=e^{x} \quad g^{(n)}(0)=1 \\
& g^{\prime}(x)=e^{x} \quad \vdots \\
& g^{(n)}(x)=e^{x}
\end{aligned}
$$

(3) A careful look at remainders, R_{n}, of Taylor series.

So $S=P_{n}(x)+R_{n}$ or $S \underset{\sim}{\approx} P_{n}(x)$, we error $\left|R_{n}\right|$ $\mathcal{T}_{n}(x)$ estimate sum w/ $n^{\text {th }}$ partial sum
Remainder The:
$\left|R_{n}\right| \leqslant \frac{M}{(n+1)!}(x-a)^{n+1}$ for x in interval I and $M=$ maximum value of $f^{(n+1)}(x)$ on I.
(4) Write $p_{2}(x)$, the and Taylor polynomial for $g(x)=e^{x}$ centered at $x=0$ and use it to estimate e. Estimate $\left|R_{2}\right|$ on the interval of the x-axis between the center $(a=0)$ and where we are estimating

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots ; p_{2}(x)=1+x+\frac{1}{2} x^{2} \\
& e=e^{1} \approx p_{2}(1)=1+1+\frac{1}{2} \cdot l^{2}=2.5
\end{aligned}
$$

Estimate $\left|R_{2}\right|$ using Remainder Thy. $M=\max f^{(3)}(x)$ on I

$[-1,1]$

$$
\cdot I=[0,1] \circ \circ
$$

- $|x-0|^{n+1} \leq 1^{n+1}=1 \quad \begin{aligned} & \text { Bonus: How many } \\ & \text { terms to get wii } 1 / 100 \\ & \text { value of correct }\end{aligned}$ on 工 terms to ? Need $\frac{3}{(n+1)!}<\frac{1}{100}$
$=\max e^{x}$ on $I \leq e^{\prime}<3$
So, $\left|R_{2}\right| \leqslant \frac{3}{3!}(1)=\frac{1}{2}$
or $300<(n+1)!\quad \begin{aligned} & n=5 \text { is } \\ & \text { sufficed }\end{aligned}$ sufficient!
(5) Use the Taylor series from (2) on this sheet to find (quickly), the Taylor series for $g(x)=e^{x / 2}$ and

$$
\begin{aligned}
& g(x)=e^{x / 2}=\sum_{n=0}^{\infty} \frac{1}{n!} \cdot\left(\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n} n!}<\text { Same thing we got }_{\text {last Fri! }} \\
& h(x)=e^{x^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(x^{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}=1+x^{2}+\frac{1}{2!} x^{4}+\frac{1}{3!} x^{6}+\frac{1}{4!} x^{8}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) Observe that the Taylor series for } h(x) \text { allows us to solve a very hard problem! } \\
& \int_{0}^{1} e^{x^{2}} d x=\int_{0}^{1}\left(\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}\right) d x=\left.\sum_{n=0}^{1}\left(\int_{0}^{2 n} \frac{1}{n!} x^{2 n} d x\right)\right|_{0} ^{1} \\
& \left.=\sum_{0}^{\infty}\left(\frac{1}{n!} \cdot \frac{1}{(2 n+1)}-x\right]_{n}^{2 n+1}\right]_{n=0}^{\infty} \frac{1}{(2 n+1) n!}=1+\frac{1}{3}+\frac{1}{5 \cdot 2!}+\frac{1}{7 \cdot 3!}+\cdots
\end{aligned}
$$

In fact: $S_{S}=1.46253 \mathrm{w} / \mathrm{i} \frac{1}{10,000}$ th of exact ansuer.

