SECTION 6.3: REMAINDERS, SECTION 6.4: INTRO

(1) Review from Friday (You should do this from memory OR from your notes from Friday.)
(a) If f(x) has derivatives of all orders at x = a, then the **Taylor series** for f(x) at x = a is

(b) Write the Taylor series for $y = \ln(x)$ at x = 1 and plug x = 2 into that formula.

- (c) Write the Taylor series for $f(x) = \cos(x)$ at $a = \pi/2$ and write $p_1(x)$ and $p_3(x)$, the first and third Taylor polynomials for f(x).
- (2) Using the definition, find the Taylor series for $g(x) = e^x$ centered at a = 0.

(3) A careful look at **remainders**, R_n , of Taylor series.

(4) Write $p_2(x)$, the 2nd Taylor polynomial for $g(x) = e^x$ centered at x = 0 and use it to estimate e. Estimate $|R_2|$ on the interval of the *x*-axis between the center (a = 0) and where we are estimating (x = 1).

(5) Use the Taylor series from (2) on this sheet to find (quickly) a Taylor series for $g(x) = e^{x/2}$ and $h(x) = e^{x^2}$.

(6) Observe that the Taylor series for h(x) allows us to solve a very hard problem!