SECTION 6.3: REMAINDERS, SECTION 6.4: INTRO
(1) Review from Friday (You should do this from memory OR from your notes from Friday.)
(a) If $f(x)$ has derivatives of all orders at $x=a$, then the Taylor series for $f(x)$ at $x=a$ is
(b) Write the Taylor series for $y=\ln (x)$ at $x=1$ and plug $x=2$ into that formula.
(c) Write the Taylor series for $f(x)=\cos (x)$ at $a=\pi / 2$ and write $p_{1}(x)$ and $p_{3}(x)$, the first and third Taylor polynomials for $f(x)$.
(2) Using the definition, find the Taylor series for $g(x)=e^{x}$ centered at $a=0$.
(3) A careful look at remainders, R_{n}, of Taylor series.
(4) Write $p_{2}(x)$, the 2nd Taylor polynomial for $g(x)=e^{x}$ centered at $x=0$ and use it to estimate e. Estimate $\left|R_{2}\right|$ on the interval of the x-axis between the center $(a=0)$ and where we are estimating ($x=1$).
(5) Use the Taylor series from (2) on this sheet to find (quickly) a Taylor series for $g(x)=e^{x / 2}$ and $h(x)=e^{x^{2}}$.
(6) Observe that the Taylor series for $h(x)$ allows us to solve a very hard problem!

