(1) Recall from previous day:

If $f(x)$ has derivatives of all orders at $x=a$, then the Taylor series for $f(x)$ at $x=a$ is

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

(2) Recall the Taylor series for $y=\ln (x)$ at $x=1$ is:

$$
\ln (x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n} \xrightarrow[\text { cool stuff at end }]{\rightarrow}
$$

(3) Find the Taylor series for each function $f(x)$ at the given center $x=a$. (If you want to be ambitious, find their intervals of convergence!)

$$
\begin{array}{lr}
\begin{array}{ll}
\text { find their intervals of convergence!) } \\
\text { (a) } f(x)=\cos (x) \text { at } a=\pi / 2 & \text { at } x=\pi / 2
\end{array} \\
f(x)=\cos (x) & f(\pi / 2)=0=f^{(4)}(\pi / 2) \\
f^{\prime}(x)=-\sin (x)=f^{(5)}(x) & f^{\prime \prime}(\pi / 2)=-1=f^{(5)}(\pi / 2) \\
f^{\prime \prime}(x)=-\cos (x)=f^{(6)}(x) & f^{\prime \prime}(\pi / 2)=0=f^{(6)}(\pi / 2) \\
f^{\prime \prime \prime}(x)=\sin (x)=f^{(7)}(x) & f^{\prime \prime \prime}(\pi / 2)=1=f^{(3)}(\pi / 2)
\end{array}
$$

- They alternate between I and (-)

$$
f^{(4)}(x)=\cos (x)=f(x)
$$

Answer: $\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!}(x-\pi / 2)^{2 n+1}$

$$
\begin{aligned}
& \text { (b) } f(x)=e^{x / 2} \text { at } x=0 \\
& f(x)=e^{x / 2} \\
& f^{\prime}(x)=\frac{1}{2} e^{x / 2} \\
& e^{x / 2}=\sum_{n=0}^{\infty} \frac{1}{2^{n} n!} x^{n} \\
& f^{\prime \prime}(x)=\left(\frac{1}{2}\right)^{2} e^{x / 2} \quad \text { I.O.C } \quad(-\infty, \infty) \\
& f^{\prime \prime \prime}(x)=\left(\frac{1}{2}\right)^{3} e^{x / 2} \\
& f^{(n)}(x)=\left(\frac{1}{2}\right)^{n} e^{x / 2} \\
& f^{(n)}(0)=\left(\frac{1}{2}\right)^{n} e^{0 / 2}=\left(\frac{1}{2}\right)^{n} .
\end{aligned}
$$

(4) Definition: The n-th Taylor polynomial of $f(x)$ centered at $x=a$ is:

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

(a) Find the first four Taylor polynomials, $p_{0}(x), p_{1}(x), p_{2}(x), p_{3}(x)$, for $f(x)=e^{x / 2}$.

$$
\begin{aligned}
& e^{x / 2}=\sum_{n=0}^{\infty} \frac{1}{2^{n} n!} x^{n}=1+\frac{x}{2}+\frac{x^{2}}{2^{2} \cdot 2!}+\frac{x^{3}}{2^{3} \cdot 3!}+\cdots \\
& P_{0}(x)=1 \\
& P_{1}(x)=1+\frac{x}{2} \\
& P_{2}(x)=1+\frac{x}{2}+\frac{x^{2}}{8} \\
& P_{3}(x)=1+\frac{x}{2}+\frac{x^{2}}{8}+\frac{x^{3}}{48}
\end{aligned}
$$

(b) Graph at least $f(x), p_{0}(x)$ and $p_{1}(x)$ on the same set of axes. (If you want to be ambitious, graph $p_{2}(x)$ and $p_{3}(x)$ too.) Where have you seen $p_{1}(x)$ before?

$$
\ln (x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n}
$$

I.O.C. : Use ratio test.

$$
\begin{aligned}
& \text { I.O.C.: Use ratio } \\
& \lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{n+1} \cdot \frac{n}{(x-1)^{n}}\right|=\lim _{n \rightarrow \infty}|x-1|\left(\frac{n}{n+1}\right)=|x-1|<1
\end{aligned}
$$

So $-1<x-1<1$ or $0<x<2$.

$$
\text { So }-1<x-1<1 \text { or ? } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(1)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} t \begin{gathered}
\text { alt. harmmic } \\
\text { series. }
\end{gathered}
$$

So it converges.
What cool thing did we learn??
The alternating harmonic series converges to $\ln (2)$. $(!!)$

$$
\ln (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots
$$

