Section 6.4: Working With Taylor Series
(1) Write the Taylor Series of $f(x)=e^{x}$ at $a=0$ either from memory or using the formula. State the interval of convergence.
(2) The Point of this Section and Chapter 5 and 6:
(3) Evaluate $\int_{0}^{1} e^{x^{2}} d x$.
(4) (a) $f(x)=\sqrt{x+1}$
(b) $g(x)=\frac{1}{\sqrt[3]{1+x}}$
(5) Definition of $\binom{r}{n}$
(6) The Taylor Series for $f(x)=(1+x)^{r}$.
(7) This is a step-by-step walk through problem \# 234 from Section 6.4.
(a) Find the Taylor Series for $f(x)=\sin (x)$ at $a=0$.
(b) Use the previous part to find the Taylor series for $f(x)=\sin (2 x)$ at $a=0$.
(c) Show that $\sin ^{2}(x)=\int_{0}^{x} 2 \sin (t) \cos (t) d t$.
(d) (\# 243) Use the fact that $\sin (2 x)=2 \sin (x) \cos (x)$ to find a power series representation for $\sin ^{2}(x)$

