Section 7.2: Calculus of Parametric Curves

(1) Translating Calculus Ideas to Parametric Curves

Suppose you are given a curve defined as $x(t)$ and $y(t)$:
(a) $\frac{d y}{d x}$
(b) $\frac{d^{2} y}{d x^{2}}$
(c) area under curve
(d) arc length
(2) Given the parametric equations $x(t)=t^{3}+1, y(t)=2 t-t^{2}$, answer the following questions without eliminating the parameter.
(a) Find $d y / d x$ and $d^{2} y / d x^{2}$.
(b) Write the equation of the tangent line to the curve at $t=1$.
(c) Is the curve concave up or concave down at $t=1$?
(d) Determine the area below the curve and above the x-axis.
(3) Determine the arc length of the cycloid $x(\theta)=\theta-\sin (\theta)$ and $y(\theta)=1-\cos (\theta)$ from $t=0$ to $t=2 \pi$.

