SECTION 7.2: CALCULUS OF PARAMETRIC CURVES

(1) Translating Calculus Ideas to Parametric Curves

Suppose you are given a curve defined as x(t) and y(t):

(a) $\frac{dy}{dx}$

(b) $\frac{d^2y}{dx^2}$

(c) area under curve

(d) arc length

(2) Given the parametric equations x(t) = t³ + 1, y(t) = 2t - t², answer the following questions without eliminating the parameter.
(a) Find dy/dx and d²y/dx².

- (b) Write the equation of the tangent line to the curve at t = 1.
- (c) Is the curve concave up or concave down at t = 1?
- (d) Determine the area below the curve and above the *x*-axis.

(3) Determine the arc length of the cycloid $x(\theta) = \theta - \sin(\theta)$ and $y(\theta) = 1 - \cos(\theta)$ from t = 0 to $t = 2\pi$.