Section 7.4: Area in Polar Coordinates
(1) Suppose $r=f(\theta)$ is a continuous and nonnegative on the interval from $\alpha \leq \theta \leq \beta$, then the area bounded by $r=f(\theta)$ and the radial lines $\theta=\alpha$ and $\theta=\beta$ is

$$
A=\int_{\alpha}^{\beta} \frac{1}{2}[f(\theta)]^{2} d \theta
$$

$\boldsymbol{r}^{(2)}$ Set up and evaluate the integral to find the area enclosed by the polar curve $r=10 \cos (\theta)$.

$$
\theta=\frac{\pi}{2}
$$

$$
\begin{aligned}
A & =\int_{0}^{\pi} \frac{1}{2}(10 \cos \theta)^{2} d \theta=50 \int_{0}^{\pi} \cos ^{2} \theta d \theta \\
& =25 \int_{0}^{\pi}(1+\cos (2 \theta)) d \theta \\
& =25\left(\theta+\left.\frac{1}{2} \sin (\theta)\right|_{0} ^{\pi}\right.
\end{aligned}
$$

$$
=25((\pi+0)-0))=25 \pi
$$

(3) Let R be the region enclosed by the polar curve $r=2 \cos (3 \theta)$. Shade the region R, then Set up and evaluate the integral to find the area of R.

$$
\begin{aligned}
& A=6 \cdot \int_{0}^{\pi / 6} \frac{1}{2}(2 \cos (3 \theta))^{2} d \theta \\
= & 12 \int_{0}^{\pi / 6} \cos ^{2}(3 \theta) d \theta=6 \int_{0}^{\pi / 6}(1+\cos (6 \theta)) d \theta \\
= & \left.6\left(\theta+\frac{1}{6} \sin (6 \theta)\right)\right|_{0} ^{\pi / 6} \\
= & 6\left(\left(\frac{\pi}{6}+0\right)-0\right)=\pi
\end{aligned}
$$

