Midterm I Practice Problems

Evaluate the integrals below. Your answers should be reasonably simplified.

1. Find the volume of the solid obtained by rotating the region bounded by the curves $y=\sec (x)$, $y=0, x=0$, and $x=\pi / 4$ about the x - axis.
2. Consider the region R bounded by the curves $y=x^{2}$ and $y=5 x$. Set up the integral(s) for each problem below.
(a) The area of R.
(b) The volume when R is rotated about the x-axis using disks/washers.
(c) The volume when R is rotated about the x-axis using shells.
(d) The volume when R is rotated about the y-axis using disks/washers.
(e) The volume when R is rotated about the y-axis using shells.
(f) Find the center of mass of R assuming the density is constant.
3. Suppose it takes a force of 10 N to stretch a spring 0.2 m from the equilibrium position. How much work is done to stretch the spring 0.5 m from the equilibrium position?
4. Find the work done in pumping liquid out of the top of a cylindrical tank. The tank is 10 meters tall and is resting on its circular base which has a radius of 3 meters. Assume the liquid is 6 meters deep. The density of the liquid is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. (Observe that the weight density or force density of the liquid is

$$
\left.\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=9800 \frac{(\mathrm{~kg} \cdot \mathrm{~m}) / \mathrm{s}^{2}}{\mathrm{~m}^{3}}=9800 \frac{\mathrm{~N}}{\mathrm{~m}^{3}} .\right)
$$

5. Let C be the curve defined by $y=6 x^{3 / 2}$ between $x=0$ and $x=4$. Set up the integral for each problem below.
(a) The length of the curve C.
(b) The surface area if C is rotated about the x-axis.
(c) The surface area if C is rotated about the y-axis.
6. $\int \tan ^{3} \theta \sec ^{4} \theta d \theta$
7. $\int \frac{\sqrt{x^{2}-25}}{x} d x$
8. $\int x \sec ^{2}(x) d x$
9. $\int \frac{x^{2}+x+2}{x^{3}+x} d x$
