1. Indefinite Integrals
(a) The directions for all such problems include the words Use correct notation. What does this mean in practice?
(b) Compute and simplify the improper integral $\int_{2}^{5} \frac{3 x}{x^{2}-4} d x$ or show that it diverges. Use correct notation.
(c) Check your work (not just your answer) against the solution. Did you use correct notation? Could anyone other than you follow and understand your work?
2. Sequences and Series: The Basics

Let $a_{n}=\frac{n}{2 n+1}$ for $n=1,2,3, \cdots$
(a) Write the first four terms in the sequence $a_{1}, a_{2}, a_{3}, \cdots$.
(b) Does the sequence above converge? Show your work.
(c) Write the series $\frac{1}{3}+\frac{2}{5}+\frac{3}{7}+\frac{4}{9}+\cdots$ using sum $\left(\sum\right)$ notation.
(d) Does the series above converge? Show that your answer is correct by stating the test you are using and applying that test.
(e) Write S_{1}, S_{2}, and S_{3}, the first three terms in the sequence of partial sums of the series. Does the sequence $S_{1}, S_{2}, S_{3}, S_{4}, \cdots$ converge? Explain your answer.

3. Convervent and Divergent Series

- Expect to use different tests. No midterm or final will be do-able by repeatedly using the same one or two tests over and over again.
- Recall that a correct answer here is not "converge" or "diverge" since a coin can get that right 50% of the time. A correct answer is a correct application of an appropriate test. So the act of checking your answer should not be limited to the words "converge" or "diverge."
- Check you work. Does it look anything like the solutions? Could anyone other than you follow and understand your work?

Determine if the following series converge or diverge. Show your work.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 \sqrt{n}+\pi}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{e}}$
(c) $\sum_{n=1}^{\infty} \frac{5}{n+\ln (n)}$
(d) $\sum_{n=1}^{\infty} \frac{10^{n}}{(2 n)!}$
(e) $\sum_{n=0}^{\infty} \frac{n 2^{n}}{5^{n}}$
(f) $\sum_{n=2}^{\infty} \frac{\sin ^{3}(n)}{n^{2}+1}$
4. Use the Integral Test to show that the series $\sum_{n=0}^{\infty} \frac{1}{1+n^{2}}$ converges.
5. Explain why the series $\sum_{n=2}^{\infty} \frac{(-2)^{n}}{7^{n}}$ converges and determine its sum. (HINT: Look carefully at the summation limits)
6. Find the interval of convergence for the power series $\sum_{n=0}^{\infty} \frac{1}{3^{n}}(x-1)^{n}$
7. Find a power series representation for $\frac{2 x}{3+x}$
8. Write the Taylor series for $f(x)=e^{2 x}$ centered at $x=1$.

