RECITATION: REVIEW OF DERIVATIVE AND INTEGRATION RULES

1. Fill out the table below.

$\frac{d}{dx}\left(e^{x}\right) =$	$\frac{d}{dx}\left(\ln(x)\right) =$	$\frac{d}{dx}\left(x^k\right) =$
		where $k \neq 0$
$\frac{d}{dx}\left(c\right) =$	$\frac{d}{dx}\left(\sin(x)\right) =$	$\frac{d}{dx}\left(\cos(x)\right) =$
where c is a constant		
$\frac{d}{dx}\left(\tan(x)\right) =$	$\frac{d}{dx}\left(\sec(x) ight) =$	$\frac{d}{dx}\left(\arcsin(x)\right) =$
$\frac{d}{dx}\left(\arctan(x)\right) =$	$\frac{d}{dx}\left(f(x)\cdot g(x)\right) =$	$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) =$
d	d	d
$\frac{d}{dx}\left(f(g(x))\right) =$	$\frac{d}{dx}\left(k\cdot g(x)\right) =$	$\frac{d}{dx}\left(f(x) + g(x)\right) =$
	where k is a constant	
$\frac{d}{dx}\left(\csc(x)\right) =$	$\frac{d}{dx}\left(\cot(x)\right) =$	$\frac{d}{dx}\left(x \right) =$

2. Write the equivalent integral formula *where possible*.