Summary of Convergence Tests | Series or Test | Conclusions | Comments | |---|--|--| | Divergence Test For any series $\sum_{n=1}^{\infty} a_n$, evaluate $\lim_{n \to \infty} a_n$. | If $\lim_{n \to \infty} a_n = 0$, the test is inconclusive. | This test cannot prove convergence of a series. | | | If $\lim_{n \to \infty} a_n \neq 0$, the series diverges. | | | Geometric Series $\sum_{n=1}^{\infty} ar^{n-1}$ | If $ r < 1$, the series converges to $a/(1-r)$. | Any geometric series can be reindexed to be written in the form $a + ar + ar^2 + \cdots$, where a is the initial term and r is the ratio. | | | If $ r \ge 1$, the series diverges. | | | p -Series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ | If $p > 1$, the series converges. | For $p = 1$, we have the harmonic series $\sum_{n=1}^{\infty} 1/n$. | | | If $p \le 1$, the series diverges. | n = 1 | | Comparison Test For $\sum_{n=1}^{\infty} a_n$ with nonnegative terms, compare with a known series $\sum_{n=1}^{\infty} b_n$. | If $a_n \leq b_n$ for all $n \geq N$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. | Typically used for a series similar to a geometric or <i>p</i> -series. It can sometimes be difficult to find an appropriate series. | | | If $a_n \ge b_n$ for all $n \ge N$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. | | | Limit Comparison Test For $\sum_{n=1}^{\infty} a_n$ with positive terms, compare with a series $\sum_{n=1}^{\infty} b_n$ by evaluating $L = \lim_{n \to \infty} \frac{a_n}{b_n}.$ | If L is a real number and $L \neq 0$, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge. | Typically used for a series similar to a geometric or p -series. Often easier to apply than the comparison test. | | Series or Test | Conclusions | Comments | |---|--|--| | | If $L=0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. | | | | If $L = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. | | | Integral Test If there exists a positive, continuous, decreasing function f such that $a_n = f(n)$ for all $n \ge N$, evaluate $\int_N^\infty f(x) dx$. | $\int_{N}^{\infty} f(x)dx \text{ and } \sum_{n=1}^{\infty} a_{n}$ both converge or both diverge. | Limited to those series for which the corresponding function f can be easily integrated. | | Alternating Series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n \text{ or } \sum_{n=1}^{\infty} (-1)^n b_n$ | If $b_{n+1} \le b_n$ for all $n \ge 1$ and $b_n \to 0$, then the series converges. | Only applies to alternating series. | | Ratio Test For any series $\sum_{n=1}^{\infty} a_n$ with | If $0 \le \rho < 1$, the series converges absolutely. | Often used for series involving factorials or exponentials. | | n = 1
nonzero terms, let
$\rho = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right .$ | If $\rho > 1$ or $\rho = \infty$, the series diverges. | | | | If $\rho = 1$, the test is inconclusive. | | | Root Test For any series $\sum_{n=1}^{\infty} a_n$, let $\rho = \lim_{n \to \infty} \sqrt[n]{ a_n }$. | If $0 \le \rho < 1$, the series converges absolutely. | Often used for series where $ a_n = b_n^n$. | | | If $\rho > 1$ or $\rho = \infty$, the series diverges. | | | | If $\rho = 1$, the test is inconclusive. | |