Summary of Convergence Tests

Series or Test	Conclusions	Comments
Divergence Test For any series $\sum_{n=1}^{\infty} a_n$, evaluate $\lim_{n \to \infty} a_n$.	If $\lim_{n \to \infty} a_n = 0$, the test is inconclusive.	This test cannot prove convergence of a series.
	If $\lim_{n \to \infty} a_n \neq 0$, the series diverges.	
Geometric Series $\sum_{n=1}^{\infty} ar^{n-1}$	If $ r < 1$, the series converges to $a/(1-r)$.	Any geometric series can be reindexed to be written in the form $a + ar + ar^2 + \cdots$, where a is the initial term and r is the ratio.
	If $ r \ge 1$, the series diverges.	
p -Series $\sum_{n=1}^{\infty} \frac{1}{n^p}$	If $p > 1$, the series converges.	For $p = 1$, we have the harmonic series $\sum_{n=1}^{\infty} 1/n$.
	If $p \le 1$, the series diverges.	n = 1
Comparison Test For $\sum_{n=1}^{\infty} a_n$ with nonnegative terms, compare with a known series $\sum_{n=1}^{\infty} b_n$.	If $a_n \leq b_n$ for all $n \geq N$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.	Typically used for a series similar to a geometric or <i>p</i> -series. It can sometimes be difficult to find an appropriate series.
	If $a_n \ge b_n$ for all $n \ge N$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.	
Limit Comparison Test For $\sum_{n=1}^{\infty} a_n$ with positive terms, compare with a series $\sum_{n=1}^{\infty} b_n$ by evaluating $L = \lim_{n \to \infty} \frac{a_n}{b_n}.$	If L is a real number and $L \neq 0$, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.	Typically used for a series similar to a geometric or p -series. Often easier to apply than the comparison test.

Series or Test	Conclusions	Comments
	If $L=0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.	
	If $L = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.	
Integral Test If there exists a positive, continuous, decreasing function f such that $a_n = f(n)$ for all $n \ge N$, evaluate $\int_N^\infty f(x) dx$.	$\int_{N}^{\infty} f(x)dx \text{ and } \sum_{n=1}^{\infty} a_{n}$ both converge or both diverge.	Limited to those series for which the corresponding function f can be easily integrated.
Alternating Series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n \text{ or } \sum_{n=1}^{\infty} (-1)^n b_n$	If $b_{n+1} \le b_n$ for all $n \ge 1$ and $b_n \to 0$, then the series converges.	Only applies to alternating series.
Ratio Test For any series $\sum_{n=1}^{\infty} a_n$ with	If $0 \le \rho < 1$, the series converges absolutely.	Often used for series involving factorials or exponentials.
n = 1 nonzero terms, let $\rho = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right .$	If $\rho > 1$ or $\rho = \infty$, the series diverges.	
	If $\rho = 1$, the test is inconclusive.	
Root Test For any series $\sum_{n=1}^{\infty} a_n$, let $\rho = \lim_{n \to \infty} \sqrt[n]{ a_n }$.	If $0 \le \rho < 1$, the series converges absolutely.	Often used for series where $ a_n = b_n^n$.
	If $\rho > 1$ or $\rho = \infty$, the series diverges.	
	If $\rho = 1$, the test is inconclusive.	