We will try to estimate the definite integral

$$
\int_{0}^{2} \cos \left(x^{2}\right) d x
$$

I do not know how to do it by hand exactly. (Feel free to try?) However, we can graph the function $y=\cos \left(x^{2}\right)$. Eyeballing the graph at right, the area above the axis is about 1 and the area below is about $1 / 2$, so we expect a
 final integral of about $1 / 2$.

1. Write down the Midpoint Rule $M_{4}$ for this integral, with $n=4$ subintervals. (What are the values of $\Delta x$ and the points $m_{i}$ ?)
2. Use a calculator to evaluate $M_{4}$. Round your estimate to 4 decimal places.
3. Write down the Trapezoid Rule $T_{4}$ for this integral, with $n=4$ subintervals. (What are the values of $\Delta x$ and the points $x_{i}$ ?)
4. Use a calculator to evaluate $T_{4}$. Round your estimate to 4 decimal places.
5. Write down Simpson's Rule $S_{4}$ for this integral, with $n=4$ subintervals. (What are the values of $\Delta x$ and the points $x_{i}$ ?)
6. Use a calculator to evaluate $S_{4}$. Round your estimate to 4 decimal places.
7. In Matlab, the command
```
>> integral(@(x) cos(x.^2),0,2)
```

gives the 0.461461462433216 as an estimate. Using this number as the exact value of the integral, determine the absolute error for each of the three estimates $M_{4}, T_{4}, S_{4}$.

