We will try to estimate the definite integral

$$
\int_{0}^{2} \cos \left(x^{2}\right) d x \quad f(x)=\cos \left(x^{2}\right)
$$

I do not know how to do it by hand exactly. (Feel free to try?) However, we can graph the function $y=\cos \left(x^{2}\right)$. Eyeballing the graph at right, the area above the axis is about 1 and the area below is about $1 / 2$, so we expect a
 final integral of about $1 / 2$.

1. Write down the Midpoint Rule M_{4} for this integral, with $n=4$ subintervals. (What are the values of

$$
\begin{aligned}
& \begin{array}{l}
\left.\Delta x \text { and the points } m_{2} ?\right) \\
\Delta x=(2-0) / 4=12, m_{1}=0.25, m_{2}=0.75, m_{3}=1.25, m_{4}=1.75 \\
M_{4}=\Delta x\left(f\left(m_{1}\right)+f\left(m_{2}\right)+f\left(m_{3}\right)+f\left(m_{4}\right)\right) \quad
\end{array},+1, m_{2}
\end{aligned}
$$

2. Use a calculator to evaluate M_{4}. Round your estimate to 4 decimal places.

$$
M_{4}=0.4277
$$

3. Write down the Trapezoid Rule T_{4} for this integral, with $n=4$ subintervals. (What are the values of

$$
\begin{aligned}
& \left.\Delta x \text { and the points } x_{2}\right) \\
& \Delta x=1, x_{0}=0, x_{1}=\frac{1}{2}, x_{2}=1, x_{3}=1.5, x_{4}=2 \\
& T_{4}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+f\left(x_{4}\right)\right)
\end{aligned}
$$

4. Use a calculator to evaluate T_{4}. Round your estimate to 4 decimal places.

$$
T_{4}=0.5271
$$

5. Write down Simpson's Rule S_{4} for this integral, with $n=4$ subintervals. (What are the values of Δx and the points x_{i} ?)

$$
\begin{aligned}
& \left.\Delta x=1, x_{0}=0, x_{1}=\frac{1}{2}, x_{2}=1, x_{3}=\frac{3}{2}, x_{4}=2\right\} \\
& S_{4}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right)
\end{aligned}
$$

6. Use a calculator to evaluate S_{4}. Round your estimate to 4 decimal places.

$$
S_{4}=0.4650
$$

7. In Matlab, the command

$$
\gg \text { integral (@(x) } \cos (x \cdot \wedge 2), 0,2)=5
$$

gives the 0.461461462433216 as an estimate. Using this number as the exact value of the integral, determine the absolute error for each of the three estimates M_{4}, T_{4}, S_{4}.

$$
\left.\left.\begin{array}{rl}
\left|M_{4}-I\right|=0.34 \\
\left|T_{4}-I\right|=0.66
\end{array}\right\} \text { comparable } ~ \begin{array}{rl}
\left|S_{4}-I\right|=0.0035
\end{array}\right\} \text { substantially, } \begin{aligned}
& \text { more accurate } \\
& \text { for same ama } \\
& \text { of work } \$ 366
\end{aligned}
$$

