
SECTION 3.6: NUMERICAL INTEGRATION

We will try to estimate the definite integral

I do not know how to do it by hand exactly. (*Feel free to try*?) However, we can graph the function $y = cos(x^2)$. Eyeballing the graph at right, the area above the axis is about 1 and the area below is about 1/2, so we expect a final integral of about 1/2.

1. Write down the Midpoint Rule M_4 for this integral, with n = 4 subintervals. (What are the values of Δx and the points m_i ?) $\Delta x = (2-0)/4 = \frac{1}{2}$, $m_1 = 0.25$, $m_2 = 0.75$, $m_3 = 1.25$, $m_4 = 1.75$

 $M_{y} = \Delta x \left(f(m_{1}) + f(m_{2}) + f(m_{2}) + f(m_{4}) \right)$

2. Use a calculator to evaluate M_4 . Round your estimate to 4 decimal places.

 $M_4 = 0.4277$

3. Write down the Trapezoid Rule T_4 for this integral, with n = 4 subintervals. (What are the values of Δx and the points x_i ?) $\Delta x = \sqrt{2}$, $x_0 = 0$, $x_1 = \frac{1}{2}$, $x_2 = 1$, $x_3 = 1.5$, $x_4 = 2$

 $T_{4} = \frac{5\times}{2} \left(f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + 2f(x_{3}) + f(x_{4}) \right)$

4. Use a calculator to evaluate T_4 . Round your estimate to 4 decimal places.

74 = 0.5271

5. Write down Simpson's Rule S_4 for this integral, with n = 4 subintervals. (What are the values of Δx and the points x_i ?)

bx = k, $x_0 = 0$, $x_1 = \frac{1}{2}$, $x_2 = 1$, $x_3 = \frac{3}{2}$, $x_4 = 25$ $S_{4} = \frac{4}{2} \left(f(x_{0}) + 4 f(x_{1}) + 2 f(x_{2}) + 4 f(x_{3}) + f(x_{4}) \right)$

6. Use a calculator to evaluate S_4 . Round your estimate to 4 decimal places.

 $S_{4} = 0.4650$

7. In Matlab, the command

>> integral(@(x) cos(x.^2),0,2)

gives the 0.461461462433216 as an estimate. Using this number as the exact value of the integral, determine the *absolute* error for each of the three estimates M_4 , T_4 , S_4 .

= T

 $|M_{y}-I| = 0.34$ } comparable $|T_{4} - I| = 0.66$ 154-II=0.0035 3 substantially more accurate for same a mont of work