SECTION 5.1: SEQUENCES

1. To know by the end of section 5.1:
(a) what an infinite sequence is
(b) how to read and use sequence notation
(c) what it means to "Find a formula for the nth term", and how to find it
(d) what it means for a sequence to converge or diverge
(e) different limit techniques for determining if a sequence converges or diverges, including L'Hopital's rule
(f) what n ! means
(g) terms for describing a sequence: bounded, monotone, increasing, decreasing
2. For each sequence below, write the first 5 terms and graph them.
(a) $\left\{\frac{n+2}{2 n}\right\}_{n=1}^{\infty}$
(b) $a_{n}=3\left(\frac{-1}{2}\right)^{n-1}$ for $n \geq 1$
(c) $a_{1}=5$ and $a_{n}=2 a_{n-1}+1$
3. Find a formula for 2 (c).
4. Definition: The symbol n ! or " n factorial" means
and $0!=$
5. Find the limit of each of the following sequences or show that it diverges.
(a) $\left\{\pi+\frac{100}{n}\right\}$
(b) $a_{n}=\frac{3^{n}}{n!}$
(c) $\left\{\frac{100 n^{2}+\sqrt{n}}{n-3 n^{2}}\right\}$
(d) $\left\{\frac{n^{2}}{10^{n}}\right\}$
(e) $a_{n}=\left(1+\frac{1}{n}\right)^{n}$
